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TEQHNIGCAL NOTE NO, 1018

METHODS FTOR DETERMINATION AND COMPUTATION OF FLOW PATTERNS
OF A COMPRESSIBLE FLUID

By Stefan Bergman
SUMMARY

A well-known method of generating stream functionsg of an
incompresesible fluld flow 1s that of taking the imaginary
part of an analytic function of a complex variable. 1In pre-
vious publications of the author this method was generalized
to the case of subsonic flows of a compressible fluid. Flow
patterns, which until the present, have proved impossidble to
obtain by existing methods, were, however, obtained by this
procedure; for example, flows around an obstacle the boundary
of which 1s a closed curve,® as well as around nonsymmetric
profiles. The procedure can be extended to the case of par-
tlally supersonic flows. As this method for obtaining flow .
patterns of compressible fluid from analytic functions of a,,
compressible fluid requires rather lengthy computations, the
present paper is devoted to a detailled discussion of perform-
Ing these computatione. The operations are divided into two
groups: namely, those which need only be carried out oncé& @nd
for all and then can be tabulated (or put on mester cards) )
and those which have to be repeated in every individual case.
A detailed description is given concerning the performance of
necessary computations on punch card machinesg., This descrip-
tion is illustrated by an example. :

In the appendixes some theoretical guestions, which to a
certain extent complete the results of NACA Technical Note
No. 972, are considered. For instance, in appendix II, some
questions which arise in connection with the determination of
flow patterns around a2 nonsymmetric profile and the use of
linear integral equations for constructing flow patterns are
discussed.

'The method of Von Kdrmdn and Tsien vyields & flow around
a closed curve. However, this method assumes a linear pres-
sure-~specific volume relation, i1.e., that p = & +0/0 where
A and ¢ are constant instead of the actual relation
P = opk (adisbatic case).
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In appendix III those alterations are indicated which are
necespary in order that the operator which has been introduced
for subsonic flows may be transformed into an operator which
generates stream functlons of supersonic flows from two func-
tions of one real variabdble.

INTRODUCTION

The mathematical theory of steady two-dimensional flows
of an incompressible fluid is based essentlially on the fact
that a stream function of a flow of thie kind can be obtained
by taking the imaginary part of a convenlently chosen function

of one complex variable 8 = § + i1 log v, where v is the
speed (at the point) and 6 the angle which the velocity

veoctor (at the point) forms with a fixed direction.?

The success of this method in dealing with problems of
the theory of an incompressidble fluid, seems to suggest the
possibillity of generalizing this approach to the case of a
compressible fluid. An attempt, in this direction, has been
made by the asuthor in previous publications. To this end, in-
stead of 1log v, there is introduced A(M), a function of
the local Mach number M,® Further, instead of taking the
imaginary part of an arbitrary analytic function (i,e., apply-
ing the operator Im(=Imaginary part of)) as in the case of
an incomrressible fluild, 1t is necessary to apply a general-
fization of this procedurs to obtain from £(8 + 1IA(K)) -the
desired stream functlion.

1The introduction of functions of the variable s (in-
stead of the customarily employed functions of x + 1y, (x,¥5)
being Cartesgilan coordinates in the plane) causes some diffi-
culties of a mathematical nature; however, in contrast to the
latter method, the former, more complicated approach (often
called the hodograph method), admits of dirgect generaligation
to the case of a compressidble fluigd,. _

®The function NM) 1is real if M < 1, and purely im-
aginary if M > 1, Thus, 8 = 6 + 1A(M) 18 a complex vari-
able in the subsonic case and a real variable in the suver-
sonic case., Note that in the body of the text
AMM) - 10 = -1(8 + 1A(M)) 1is employed.
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One of the advantages of this approach is that it mani-
fests s far-reaching analogy® with the case of an incompress-
ible fluid, and is capable of yilelding flow patterns which
have not been obtained until the present - for example, flows
around & closed profile, and sb forth.® This approach makes
it possible to determine a flow pattern corresponding to any
given function. In general, the actual construction of the
flow leads to a congiderable amount of computation; conse-
quently, the use of epecial computational devices such es the
differential analyzer, punch cards, and so forth, would seem
necessary as well ae the preparation of certain tables which
are independent of the specific flow pattern, and therefore
need be prepared only once.

The most efficient means of accomplishing this is not at
all evident, and it 18 necessary to enalyze the needed compu-
tations from thie point of view. The present report has besn
prepared in an effort to answer this guestion, especlally as
regards punch card machines.®

This investigation, conducted at the Brown University,
was sponsored by and conducted with the financilal assistance
of the National Advisory Committee for Aeronautics.

The author was assisted by Mr. Leonard Greenstone, whom
he would like to thank for his valuable ald.

DESCRIPTION OF METHOD

In the author's previous report a new approach in the two-~
dimensional theory of a2 compressible fluid was developed.

1This aneslogy often serves as an indication of the proper
method for obteining results in the theory of compressidble
fluid which are similar to the case of an incompressible flulad.

®In the only case of a flow around a closed body which
has heretocfore been considered, Von Kédrmdn and Tsien have as-
sumed & linear pressure-specific volume relation, p = & + G/ﬁ,
A, O being constant, instead of the actual relation p = Op
k= 1,4, which is used in papers of the author.

®The author would like to polnt out that other devices,
in particular, the differential analyzer, are also of consid-

erable importance for many of the above computations. (See
reference 1,) '
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This method of attack is 2 generaligatior of a proced-
ure ordinarily employed in the theory of an inconpressible
fluid: namely; the generating of stream functlions of flows
from analytic functions of a complex variable.?

Pcr the convenience of the reader the general idea of
this method will be described in the following. The stream
function Y of an incompreesidle fluid flow is a harmonic
funection - that is;, it satisfies Laplace's equation

a3 _a |
o ¥ + E_ﬂ = 0 ) (1)
dx2 oy 8

X,y belng Carteslan coordinates in the plane of the flow.
Converssly, every function which satisfies egquation (1) may
bte interpreted as a stream function of a suitable flow, Thus,
if the imaginary part of an snalytic function f(z) of the
comnlex varlable z = x + 1y 418 taken, a stream function of
a passihle flow of an incompressible fluid ie obtained. As
nocadl bofore, the method of generating stream functlions Iin
this simple form cannot be extended to the case of a compress-
itie fluid, since in the latter case the partial differential
ecvation which Y(x,y) wsatisfies is a very complicated non-
linsar one, This situstion makes 1t necessary to use an al-
ternate method, the so-called "hodograph method," - that is,
to consider the stream function Y not as a function of g,
but as a function of the velocity vector.

If vy, vz, and (v,8) denote the Cartesian and polar
coordinates, respectively, of the valocity vector v that

is, if Vo= vy + ilvy = vel® and if the stream function W

ig considered as a function of (v,,vy) or of (log v,6), then
¥ 1s in each case a harmonic function of the given variables.
That is, if WVY(x,y) 1is transformed by means of the.substitu-
tion T

x = x{vy,vy), 3z ) _
X,y ' .
y = ylvy,v5), 3(vy,va) 70 : (28

YIn order to make possible this generaligzation, it is,
however, necessary to consider the stream function in the so-
called "hodograph' plane (t.e., in the plane the Cartesian
coordinates of which are the components of the velocity vec~
tor) instead of considering it in the "physical' plane (i.s.,
in the plane of the flow).
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or
x = x(log v,8), 3lx,y)
vy = y(log v,08), 3{{1og v),8)

0 {2v)

then the funetlons + obtained by the transformation (2a),
(2b) satisfy the equation -

2 a
9" + 3 W = 0 (3a)
8713 avaz
in the firet case and
2 2 )
CHUA i I Y

3{log v)®  3g®

in the second case. (Note that these 's are different
functions of their respective arguments, although the nota-
tion does not indicate this.)

By writing
V 2 Infelv, -~ ivg)] (4a)
or

V = In[h(log v - 16)] (4v)

i1f g and h are arbitrary functions of the complex vari-
able v, - ivy, =and 1log v - 18, respectively, then the

stream functions of possible flowe of an incompressible fluid
are obtained,.

Since the flow pattern in the physical plane is of pri-
mary interest, i1t 1s necessary in this cage, to carry out the
transition to the physical plane; that is, to determina
ag a functioen of x,y.

"It is this second method which, though more complicated
than the first, has the advantage of bveing capable of gener-
alization to the case of a compressible fluid flow for which
the equation of gtate, p = & + cpk, holds (A, o, k are
conetants, p the pressure, and p the density), In the



equation of state far an adlabatlc process
this additional constant does not entail any theoretical

difficulties,

Aa has besn indicated previously,

of a compreesible fluid flew,
(x,y) -~ that is, in the physical plane ~ gatisfies a nonlin-

ear partilal differential eguation. If,
sidered in the hodograph or in the logarithmic plane (i.e.,

pe a functien of (v,,vz) and of (log v,8), respectively,,
in each of these planes,a linear partial

differentlal equatlon,

then Y matisfies,
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A = O

however,

the gstream function

considered ag a function of

however,

v

is con-

In order to simplify thie equation it 18 expedlent to
introduce, lnstead of log v,

1. (1 - ¥

e new variable A,

/2

/=

A= % log [
2 1+

where

and —

here k
for air), and a,

point,

(1

- Nt

/3

<1 + n(1 - ¥3)?

1 - h{(1 -

1/h

ua)‘/f

1s the ratio of specific heats of the zas

(x

] (58)

= 1.4

the veloclty of sound at a stagnation
gsatisfies then aassumes a par-

The equation which

ticularly simple ferm: namely,?

Lo

a

W)

il
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z (aaé
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363 ____3Aa

[

t)+2ﬂ€€§g; g% -= 0

(8)

1In ﬁie"foiioéing,;iistead of A and
Z = A+ 16

variables Z =_.A. -

16,

§ the complex

will frequently be ueed.

The derivatives with respect to 2 and Z have the follpw-

ing meaning .
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wvhere _ ' (e + 1)K (7)
8(i - M3>3/a

In order to obtain a generaligation of the representation
(4b), the author in the previous report derived the follow-

ing result:

From,the function N (see (7)), certain other functions
H(2A), Qém (eA), »n=1,2,. . ., m=1,2,. . . were deter-

mined, and it is proved that the expression

Yyir, 8) = Im{H(ZA) [g(z>

[=-]

2 ¢ | |
+ lim z {20): qla) (zx-za)f f T oeltat,. .dgl]} (8)"
n. L]
) (o) .

+ - !
m yr{ 2 _

(where g(Z) "is an arbitrary analytic function a«, an ardbi-
traety non-negative constant) is a solution of (6). Thus,
from an arbitrery analytie function it is possible to derive
a function VY[A(v),8], which represents the stream function
of a possible (subsonic) flow of a compressible fluid.2 TFor-
nula (8) can also be written in another form which is suit-
able for certain purposes: namely, '

1It has been provsed, subsequently, that 1t 1s possidbls -
to interchange the gummation and the passage to the limit in
equation (8) to obtain

o Z - %_1 '
VN, 8) = Im {H(zk) [g(Z) + z (_i%)_"_Q(n)(zx)/? . f g(gn)a.gn. . .d_f,l]} (Ca)
o (S

2 n!
n=1

However, as it 1s desired to make no reference to unpublished
results, all the computations in thie report are presented in
such fashion that the use of (8) instead of (8a) entails no
addlitlonal computation; equation (8) 1s almost always employed

throughout the following.

2Formula (8) can be considered as a direct generaliza-
tion of (4b), since by choosing H = 1, an) = 0, for all

n and m, and 2 = log v ~ 18, (8) bvecomes (4Db).
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+1
¥(n,8) = Im{H(z?\) [f P20 =80y
2 /18

-1
. +1 2
+ 1im‘/ﬂ B (N, 8) £ <Z(1 =t )> d% ] } (9)
mee.f 2 Voumwrs

Bp(ht) =1 4 ) 628 §%) (2r - 2a)
n=1 i

where £(Z) 1s again an arbitrary analytic function of 2.1

It should be emphasized that the functions H(2A),
Q;n>(zk) are independent of the function g, and hence once

computed (for a giveh'value of k) may be employed in all
other stream computations without change, '

_ Once "y(A,8) (corresponding to a given function g) has
been computed, the'trdnsition to the physical plane - that is,
the determination of the corresponding flow pattern in the
physical plane =~ ‘does not ihnvolve any thebretical difficulty.

Two problems immedimtely arise in connection with this
method of attack. . ot ey -

I. How to determine function g, in (8), so as to ob-
tain, in the physical.plane, a flow. around a given obstacle
or in a channel whose.boundary curzvgs.age.given. ., . .. ... _

- N e —
*Punction £(2) ié-coﬁnecﬁéd”wtﬁﬁ" g(2)" by the follow-
ing relation: e S NS

Ly e -~ L e R L]

/3

£(2) = g,/p 2 oin o 28(22 ein® 9) g9, €00).

J, a(z sin® @) . - ™

"

I
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II. Agsume that g(2) is known,® to develop & procedure
which would permit the determination of the correspoéndling
flow pattern in the physical plane with the minimum of compu-
tation. Naturally, the flow patterns in which the aerodynam-
icist 18 primarily interested are partially supersonic ones.
Since the subsonlc case serves as & basis for further devel-
opmente, as outlined in reference 3,2 the author will limit
himself in the present report primarily to this case.®

Although problem II doees not entail any theoretical d4if-
ficulty, i1t does involve a very conslderable amount of numer-
ical computations for applications, as can be seen from the
example described in reference 4, section 3, a fact whlch rep-
resants & serious obstacle for the application of the method.

Since the determination of various flow patterns 19 one
of the purposes of the theory, the above-described situation
suggests two possible modifications of the proeedure for gen—
esrating flow patterns. )

1. The modification of the method so that a substantial
part of the computation is independent of the particular
choice of g; +thus these comnutatione can be carrlied out% and
tabulated once and for all. -

‘ryg may be remarked here that often a first approxima-
tion to the desired flow pattern of a compressible fluid is
obtained by substituting for g(Z) in (8) that analytic
function the imaginary part G(log v,0) = Im g(log v - 18)
of which gives the desired flow pattern in the physlcal plane
for an incompressible fluid. The corrections which are neces-
sary in obtaining a better approximation, as well as other
methods of determining . g{2), will be discussed in future re-
ports. (See also reference 2.) . -——

®In gec. 16 of reference 3 a nrocedure ise described which
makes it possible to generalize this method to the case,of
partially supersonic flows.

®The author intends in a succeeding report to consider
analogous questions for the case of & mixed flow in the light
of methods described in sec. 17 of reference 3,

4The need of tabulating various functions which appear
in the theory of compressible fluids has been emphasiged by
some authors. (See, for example, Garrick and Kaplan (refer-
ence 5), where the Chaplygin solutions have been tabulated.)
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2. The rearrangement of the remalning computations
(which muet be repeated in every particular case) in such a .
form that they can be carried out with a minimum amount of
labor using a punch card machine,?

The main purpose of the present report ig the develop-
ment of & method of determining the flow patterns according
to requirements 1 and 2,

In four additional notes certain prodlems conslidered in
reference 3 are developed further; these are of a more theo-
retical nature,

In appendix II, thke author shows that dy employing re-
sultes obtailned from a consideration of the singularities of
the solutions of (8) and applying the theory of linear inte-
gral aquations, it 18 possible to determine a flow for a
given hodograph. In certain cases, solutions of this kind
can be considered as a first approximation to the solution
of boundary value problems,

In appendix III methods are given for the construction
of purely supersonic flows, which methods employ various inte-
gral operator representations.

The ‘derivation of the complex potential for a Joukowskl .
profile is given in appendix IV, while appendix I 1s devoted
to the guestion of determining the Q&n),-and- L&F). ,

g S ' NOTATION

The following liet of notation is to serve the doudle
purpose of being both an index of symbols used in the present
report and a collectlon of some of the formulas, used in pre-
vious reports, to which reference 1s made in the text; how~
ever, no claim to completeness 1s made in this respect,

lAs has been emphasized by Kraft and Dibble, certalin -
aspecta of this theory may bas euccessfully treated by use of
the differential analyger. (See reference 1,)
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exp(x) = e

flnfa

g(2)

g(-2)

g(O)(
g(n)(

(2
k+

k

1(H) =
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ao? - l(k_nvz]l/"
2 tion (28

spesd

coefficients in the series sxpansion of T

x {(formula (45))

~1
coefflcients in the series expansion of T

of

x {formula (48))

base of Naperian logarithms

X

)

of sound at a stagumnation point

11

speed of sound (reference 3,equa-

in powers of

in powers

arbitrary twice continuously differentieble functions

of their arguments

an analytic function of the complex variadble 2

ag(z) _ ae‘®) (2)
az 4z

(z)

2) = g(2)

Z) nth iterated integral of

1/a

for k> 1

constant in the equation of

g(2)

state

b

(formula (lQ))

= A + ka: The

ratio of specific heats at constant pressure to con-

k =

stant volume; 1.4 ¢

{(22))
Po

p(E)

(

or air

(reference 3,formula

a 2
> (L-M2(H)) =<-§A> (reference 3, formula (45))
oH
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P pressure
Po pressure at a stagnation point

schlicht = univalent

v magnitude of the veloosity veoctor v; occasionally, ths
reduced speed v/a,
— —
v velocity vector; that is, v = velB
- ' -
Vy+¥,; Oarteslan components of 'v; that is, v = v, + 1v,

(x,y) Oartesian coordinates in the physical plane

x = eax note that in reference 3, X = eak
~h\i/h
,1=<_1__h. /2
l+h
A constant in the equation of state p = 4 + cpk (refer-

ence 3, formula (22))

A = %(k+1)M"‘(ME..1)""’/8 (formula (67))

Ay coefficlents In the series expansion of T 1in powers of
x, (formula (45)) '

Ap,m cosfficlents in the series expansion of g(2) as a
funcetion of §. cf the fractional powers of

(formula (17))

Ap,m = max(A; p,0), A;,m = max(-Ap p,0)

By coeffliclents in the gerlies expansion of p=? in powers
¢f x, (formula (486))

Cn,m coefficlents in the series expansion of g(2) as a
function of §, of the integral powers of
(formula (17))

+ -
On'm = max(Cn.m.O); on,m = max(”on,m'O)

4
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®_,E_,B_*,B

1*T a2’
(for

Fp(2X) pol

G operation

exp (—- _C+§N&(-E-+§) = 1 1
U/n (1-42)" L1+l(k-l)M2}

1018 . 13

* (See appendix III, sec. 3); (reference 3,
theorem (83).) Note that in reference 3

L+t

% = exp'< Nd(f+§)>iﬂ differing from

2

-

the usage here,

N ) _Cer1)u® SALLLDL [-(3k_1)u4 ~ 4(3-2:)%°% + 1% ;
64(1-M3)
mula (42)); (reference 3, formulas (71))

ynomial approximation of mth degree in x; to T

a computation which, since 1% is independent of
the flow, can be computed and tabulated once
end for all

1/2(k-1)

the subsonic case (reference 3, formula (111)}); and

g+n
A(s)ds) for the supersonic case; (formula (68));

his sense E 1s unsed only in the seriss expanslon

of V, as formula (8)

E =
for
HE = exp g/ﬁ
in &
v
B =

J/Q.E av
. v

(o]

Im imagin

1o(¥) = 1(

() (2n)

_ {2a)!

(formula (52)); (reference 3, formula (42)); in
this sense H 1is used as an independent vari-
able.

ary pert of : - -

é_g + __ﬂ + XN (formuls (8)); (reference 3,
SA 3g2 oA formula (46)) °

2(22)q{®)(8n) (formula (22))
28nl
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(n) _ (2n)!q, (n)
L s E{@an)q,  (2A)
N lozal Mach number; M = v/aya " v

a,° - %(k—l)v‘]17a
(formula (5));: (reference 3, formula (31))

(k+1) M

8  (1-M3

A
Q(l) = -4 /F ? axn (formulas {(49) and (8));(reference 3, for-

(formula (7)); (refereﬁce 3, formula (47))

3/8
)

. mala (107))
P o+ é (Q(1)>a (formulas (49) and (8)); (reference 3,

Q2 =t
3 formula (108))

Q(n) funections, 1ﬂdependent of the flow, which occur in the
series expansion of 1 (B8ee formulas (49) end (8);

reference 3, formula (84).)

Q(1)

Qin) Q(n) computed employing Fyp 4insteed of F (See
etc.)

rlo) H %% {(formula (23)); (reference &, formula (114), ff)

a(n) functinnes, independent of the flew, which eccur in the
serles expunsion of  (formula (23)); (reference 3,
fvrmula (114), f£f)

Rén) r(2) computed employing ¥ 1instead of F

Re resal part of

S operation &a computation which must be repeated for each
individual flow pattern to be computed

8 =1 - T (formula (44)); note in reference 3, formula (161),
g is uged for 1 -~ T,

S(n) real part of g(n), that is, g(n> = s{n) . gp(n)

p(n) imaginary part of g(n)

I
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Tm Polynomial approximation of the mth degree in x; to

Ww*(N,0; A(O).G(O)); e. fundamental solution of formula (§),
poesessing logarithmiec singularity,

-§(°) = alo) 4 1g00), ( See also
reference 3, section 13.

X;P)(v,e) ( See formuls (35).)

Yép)(v,e) (See formula (35).)

real snd imaginary part respectively, of the

Teps1,%3p (
coefficients of 2\P 1n the power series expan-

sion of g(Z); that 1s, g(2) = Ej (“ap+1

+ imap)Z(P) (S8ee formula (36). )

o, = max(a,,0), @, = max(—qh,b)

B(M) = - [tan'lA/Ma-l - % tan=1 (hq/Ma—l).](formula (65))

£ =2+ log 2 (formula (16)). In the appendixes [ =.A - 18.
N =-8 + B(M) (formula (64))

-
e angle which v makes with the real axis

6(0).9(1), « « . values of § at mesh points for a “lattice"
computation (See sec. 2.)

>\=% [(1-"‘11{ ><l+h‘VlM ) ] (formula (5));

1 +/1- M3 1- M2 (reference 3,
formula (48))

Ao A corresponding to0 the maximum Mach number of a flow in

o) (1),

. vValues of A at mesh points for a "lattice!
computation (See sec. 2.)

T

Ds
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¢t =g + B(M) (formula (64))

- 1/k-1
P density; p = Py [1 - k-1 va] / (reference 3, for-
2ag” - mula (25))
p  modulus of ¢, that is, ¢t = pel® (formula (19) £f)
po density at a stagnation point
g constant in the equation of state: p = A + opf (refer-
ence 3, formula (22))
potential funection
argument of {; that 1s, ¢{ = pel® (formula (19) £f)

W strsam function
y¥ = exp < Nd(f+§)\ W, for the subsonic case (formula

) (41)); (reference 3, formula

(69)); and
+n
Y = exp(—/n A(s)ds) v for(thi)supersonic case (formula
8
a ~2
fat Laplace operatd& &z, y) = —_i 9_% (.__ﬂ_>
ox oy dedz
Z = AN~ 18
Z = AN+ 15
. . . o
A= /n~f7(H) dH . that 1s, 2& ., /3(E (reference 3, formula
, - d4H (48)); (see sec. 5.)
A SA
B 7 3E

X<n) (See formula (33) ff;’

N (See sec. 5 of appendix III,)
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Remark: Observe that- quite frequently functions will be con-
gsldered in different planes although the notation may not, in
general, indicate this. Thus, given f£(x,y), 1let .

"
n

i(xl,xz). .
y = y{x*,z3), Xy
and obtain f(x(x?*,x®), y(x*,x2)) = £*(x?,x®). The super-

seript will be omitted and only f(x!,x®)  written, since the
meaning will be clear from the context. : .

ANALYSIS ' .o
1. An Outline of the Method to be Developed in’

the Present Report

A method of determining the stream function (in the ..
physical plane) corresponding to a given function g, the
basis of which method is equation (8), was given in section
3 of reference 4, together with a numerical example. An out-
line of this method has been given.in the introduction.

) However, a good deal of numerical work is entailed by
this approach, and the amount of laber involved increases con-
siderably for a flow the maximum velocity of which is close:
to the velocity of sound. For this reason, a modification of
the method which would cut down the amount of computation is
desirable. 4 description of the proposed modification fol-
lows: ‘

" The domain, D (in the (A, §)-plane), in which the func-
tion g(Z) is to be considered, can be divided into two dis-
tinect parts D; and Dy, defined as the subdomalns in whiech

Ao < A< 0 and A< A,, respectively. (See fig. 1.) The
number A, 1s a preassigned number whick can be altered to
gult the case? elthough, in general it will lie somewhere

'The choice of A, will depend upon the conditioms in
each case; for the most part, A, must be larger than the
meximal A coordinate of the regular points of g(Z) in D.

.-
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between A = -0,4 and AN = 0.1, corresponding to local
Mach numbers N = 0,85 and M = 0.85, respectively (M as
defined in equation (5)),

In D, the argument A varles over values which are

near gero, and, as a consequence thes series (8) will converge
very slowly, necessitating taking into account a great num-
ber of terms in order to obtaln a reasonmable degree of accu-
racy. On the other hand, g of equation (8) and therefore
f 18 regular in D; and can be represented there dy a

series developmenﬁ,i_"-j ) _ el T .

In the domain D the values of X are much smaller

and thersfore only a smallér number of terms of equation (8)
need be taken intoe account. On the other hand, in Dg the

behavlior of g may bes considerably more complex; for exam-
Pla, g mey have singularities and be many-valued. There-
fore, 1t will be assumed that . g is given by ite numerical
values on a sufficiently fine lattice, or by a number of
series, each of which converges in some subdomain of Dj.

In D; the function g can be represented dy a power

series development, and since the operator (8) is linear it
ls hence possible to prepare tables once and for all, which
will facllitate, to a very large extent, the determination

of the flow pattern (in the physical plane) This will be

explained in detall in gection 4.

In order to determine the flow in the domain correspond-
ing to Dy, the procedure of section 3 of referencs 4 may be

epplied, ©Since the computations are rather extensive, it i
expedient to employ mechanical devices., This requires a cer-

tain modlfication of the above procedure, which modification

will be described in section 2. Thus, two methods for deter-
mining the flow corresponding to a given g(2) will be de-

scribed in sections 2 and 3, Both methods employ punch card
machines; in addition, the second method presupposes that the
computorr has certain tables avalilable which are independent
of the particular flovw and hence can be computed once and

for all, - - - :

Remark: The division of D into two subdomains D, and Dy

is not necessarily to take place along the line A = Ao'
It will often be more convenient to subdivide D as

10», 1f more convenient, by a polynomial épirﬁxihéfioﬁ;
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indicated in figure 2, so that the tables which have been
prepared may he used for the largest feasible part of the
domzin D.

Remerk: 1In order to emphasize the character of a computa-
tion which 1s being performed ~ that is, whether 1%t 1s one - .
of that large clase which need be computed and tabulated '
only once since they are independent of the particular flow,

or whether the computation involved holds good only for an
individual flow - to every description of a computation willl
be added the characterization "(G operation)" or *(S opera- _|
tion)" according to ite membership 1n the former or latter
class of operatione.

2. Description of the First Method for the Construction of
the Stream Function of a Compressible Fluid Flow by
Use of Punch Card Machines
In this section the computation of a subsonic compress-
ibtle flow by means of punch card machines will be described.
This procedure is a modificatlion of the method of section 3

of refersnce 4.1

hs indicated in that report, the procedurs was divided
into three separate stages. ' T

I. Computation of the integrals

Z Zn-—l
b (n)(Z) = . .. g(z_)aZ, 42,_, . . . 42, (10)
g n n n
J, .
aezf0)
and the derivative S&___ _
az
where g(O)(Z) = g{2), 2 =A- 18, is an analytic

function

II, Construction of the flow in the (A,8)-plane - that is,
evaluation of expression (8

1In ssc. 2 of reference 4, 1t was assumed that only an
ordinary computing machine was to be used in performing the
cperations described there.
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ITII., Transition from the logarithmiec plane to the phys-
i1cal planse

Step I.~ Three different methods of evaluation of

e®)(z), n=o0, 1, 2, . . . and of (ag°)(z)/az) will ve
given in the following; two of these methods employ punch
card machines; the third ueses graphical means,. . .

The firast method is to be applled 4f the real and imag-
inary parts of g(2Z) are §iven numerically on a sufficlently
dense sst of pointe (A, 8) of the lattice.

Ths second method can be used when the function g(°)(Z)
18 given analytically and can be represented in the whole regioa
concerned by several serles developments1 around conveniently
chosen points.

The third method is much less exact; it can be used in
order t¢o check the results obtained by one of the above-
described methods,.

. " Z
g{n+1)(z) =-/p g(n)(zl)dzl (11)
Jg .
may be written in the form
(n,8) .
gln+id(zy = /P (s{mlan + 2(nlgg)
o (N,8)
+ 1 /ﬁ (r{®lan - 5(r)qp) (12)

where e

n) o os(n) | yp(n)

(See eguetion (20) of reference 4.) The right-hand gide of
?qugtion (12) may then be replaced by the approximating sum
13).

1Thsge series developments are not necessarily power
serles slnce g can have singularities in Dz, 1.e., branch

points, poles, etec.
20bserve that ?(n)' Vv
replaced by S(n), T n)' respectively.

(1) :

of sec., 3 of reference 4 are
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s P . e e e .
g(n+1)(z) = }: s(n)[}o + (k-l)Ak,eo]Ak + 1 5? T(n)[xo

k=1 i k=2 _
+ (k-l)Ax,eo] AN + i% T(n)['xo,eo + (k—l)Ae] A8
g k=1 ' -
-1 57 s(?)[ Nor8g + (k-llAeJ A (13)

k=1 G SR o
(see (21) of reference-4.) The terms AMN,AD denote the
directed distances between the meshes of the lattice (see
fig 3) ; that is, thev are positive if the integration pro-
ceeds In a2 positlve direction, otherwlse negative.

As indicated above, the (approximate) integration
(A, 8) | ) o o
/ﬂ is to be carried at first from (0,0) to (A,0) along
-/ (o, 0)

8 =0 (or if more convenient from (0, 8) o (N, 8) along € = €,),
and then from (A,0) to (A, 8) along X = constant.

A. (211 computations of & are (S obérations).)__Thg;

s . - . . '

sums Ei 'S(O} LKO + (k—l)Ah.GOJ A?y s = 1,2,?._.'. . ééﬁibe R
= . } e T,

computed on punch card machines by the foilowing procedﬁfﬁiu

Every number? [S(b)[ko + (k—l)h,eojl. k=1,2, . . .,n, 1is

to be punched, say in columns 1 to 6, into a single card of
a set N;. With every entry on this card an extra column e,

(eay, col. 7) is employed in which a number, say 1, is punched
if S(O)[Ko + (k-1)ANB, ] is negative, and nothing is punched
i1f the above number is positive. Then the cards are set for
progressive totaling; |s(%)[n, + (k1) A7 041 | will bve addea
if nothing is punched in the column ¢, and subtracted if 1

is punched in this column. The machine stops after each addi-
tion (or subtraction) punches the absolute value of the pPro-
gresslve %total, in a new card 8, £k =1,2, . . ., n, gay in

'The symbol "| |[" indicates that sign of S(°) has %o
be disregarded.
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columns 1 to 6, and in an extra column e¢5, punches 1 1if
the totel is negative and nothing if it 1s positive, '

Now the absolute value of A A 1s punched in an extra
card M and, as before, 1 is entered in mn extra column, c,
i1f AN 18 negative, and nothing if it is positive., UNow,
in a multiplylng machine every number on the card sy 1is
multiplied with the number of ¥. In order to obtain the
right slgn, an extra c¢oclunmn, Cus is provided in the new
card, If the columns ¢z and ¢5, are both empty or both
have 1 punched, then the machine will punch nothing into the
column e¢,. If, however, in one of the columns ¢y (or ca)

the number 1 is punched and the other column, e, (or e,),
is empty, the machine will punch 1 in column o4.

The obtained results then have to be printed. In anal-
ogous manner the remaining sums ares to be evaluated.

The obtained cards can then be used for esvaluation of
s(2)  ang p(2), ana so forth.

Remarkg: Clearly, the approximate summation can replace the
Integration, only 1f the integrand is uniformly continuous,
Since, in general, the integrand has singularitiee, it is
necessary to replace the approximate summation in the nelgh-
bYorhood of these points by the exact formula., This cen be
done, for 1instance, using series developmente around the con-
sidered singularity, (for details, see method B) or by other
methods.

The derivatives of first order, dg(°)/dz = dg(o)/dk,
may be obtained by replacing differentials by finite differ-
ences. (See method C.)

B, A method, emnloying the example

g(z) = % [(1 - 2e2) 3 L (1 . peZ)/? 1 (14)

eonsidered in reference 4, which may be successfully applied

when g(2Z) 1s given by series developments, will now be __ _

described,

Remark: I'f the function g(2) 1a glven in an analytic fornm,
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then 1t 1is nlways pessible to represent it by finltely many
geries developments.?

In the cage of the function given by the right-hand side
of equation (14), the series given in reference 4, equation
(25) may be used in order to represent g in the domaln
D,, A < -0.691.

Another series development of equation (14) which is
more sultable for the present purposes can be obtained in
the followling manner. N

The above function g(%Z) possssses singularities
(branch points of the second order) at the points

2 = -log 2 + ikm, K = 0, £1, 2, . . . (18)

only. 3By classical results of the theory 7f functions g(Z)”
can be expanded in series in powers of ¢1/®

{ = Z + log 2 - (18)

which series will converge for |¢{] < 2rm anad therefore will
represent g i1n a large part of the domain, D, + Dy,

which %1s of interest.® A formal computation ylelds

e LR A (O A EE R PR
2 A ; B 4
[ n=o R
(-1) = dg(o) - dg(O) 4 N m-a/a
g dz at gzl__fl,mg - _ L ;___?(17)
co ' n-1i _ | ;
R DT e IO YA
.n—:o_—- - - . ; B = o L _... _j

1A derivation of the anglytic expression for the complex
potential in the hodograph plane for a flow of an incompress-
ible fluid around a Joukowski profile is given in appendlx IV,
By using thie formula together with classical results of the
theory of functions, the series developments for the above
case can be derived. -

®Note that in example under consideration V¥ ig deter-
mined not merely in Dz, ©but also in D, by the method de-

scribed in the present section.



24 NACA TN No, 1018

The values of An p and Oy p are given 1n tables 5 and 6,
respectively.
By wrlting

g(n) = S(n> + 1T(n), n=~1, 0, 1, 2, . . . (18)

there 1s obtained _ L

o
-

S(n) = - Z‘ .A.n’mpn-*-m—i/asin [(n+m-—-> ] y On,mpm.sin mne

:gao _ m=o _>(19)

L -
T(n) = }_ An’mpn+m #bcoa R?+m~->q)] Sﬁ On'mpm cos m®

ﬂ:o ot

where
t = pet

The svaluation of the s(n)  ang p(n) o a punch card ma-
chine proceeds as follows:

The values of pk/a, k = £1, 2, =8, , . ., pl/a = 0,1,

0.2, . . ., of cos (%q;), and of sin(gcp>. k= xl, £2, ... p,

p = 0%, 30°, 60°, . ., ., 330° can easily be computed {sece
tebles 7 and 8) and entered on three sets of punch cards 4,
B, O, respectively (G operation). By using set A, two new
sets, D and E are then prepared (the following are all

(S operations)). On every punch card of the set D the values
of Ag'mpn+m"1/3 and of Cf mpm for a fixed n and fixed p

are entered, say A{T‘pn”l/a are punched in columns 1 to 6,

A: lpn+1/z in columns 7 to 12, A; 3pn+3/2 in columns 13 to
) ’

18, and so forth. Here Az'm denotes Apn n 1If Ay j i

positive, and d if An m 18 zero or negative; Gn . has an
! n+m-1, 2

analogous meaning., In a similar manner A;.mp and of

G;.mpm are entered on the cards of set . (Again Ayp p = 0
if An m > 0y and equals ‘An,m if An n S 0; the same holds
for 67 _.) By using the sets C and D,

n,n’
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" n—1 o

) _ = .
}Z A:’mpn+m l/8 ain.B@+m—% )q{kr 21 Cn’mpm sin mop .(20)
m=o0 m=0 s

is evaluated, and by using the sets C and E there may be
computed

L= n+m-1/3 1
% An,mp / sin[(nﬂu—g }p] +

!
S,

m=0 0 _ )
By subtracting (20) from (21) S(n) is obtained, Similarly,
pn) can be determined. By interpolation, the values of
S(n)(k,e) and T(n)(K,G) mey be determined at intermediate
points. [Note that pelP = (A- 16) + log 2, which yields
the relation between (p,®) and (A,6). Alternately, the ex-
pressions (19) may be evaluated by adlding on cards of the
sets B and € an extra column, ssy, column 7, in which
nothing 1s punched if the correspondirg aine or cosine is
positive and, say, 1 is punched if it is negative. In col-
umns 1 to 6 the gbsolute value of the sine or coslne is en-
tered. : o .

(=]

Cn wp" sin mp  (21)

i~

Analogously, on cards of the set D an additional column
is provided in which 1 or nothing is punched according to the
gign of A, 5 or cn,m' The actuel multiplication of the

two factors proceeds similarly to that of method A.

Since in the future 1%t will be necessary to have values
of S(n) and T'R along lines A = consbtant, these val-

ues for various values of @ and for A = -0.02, -0.06, °°
-0.10, and so forth, were computed.l (See table 9.)

C. The method described below is essentially the same
asg that deecribed in msthod A; however, now, lnstead of punch
card methods, graphical mesans are employed.

On millimeter paper the values of S(O)(K.G) and
T(o)(A.e) at firet for some fixed values of A, say, for

A = -0.02, -0.06, and so forth, and then for some fixed val-
ues of §, are drawn. (All operations of C are (S opera-
tions).) (See figs. 8 %o 15.)

‘a portion of these values had already been compubted
(much less exactly) and presented in table I% ?r reference 4,
n

vhere the symbol T, was used instead of T
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If Sk(o). Tk(ﬁ), Se(b), Te(°) are replaced by

(AS(O)/A%), (AT(G)/AA), (AS<°)/A8), (AT(O)/AG), reepectively,
approximate values for 3 and We are obtained. (See
table 10.) 4An integraph maxﬁbe uged to determine

s(V00ean, 2 o ean, /s‘°’(A.e>det/pm‘°>cx.e>ae. and
5o forth (approx.), and so obtain, using squation (12),

32y = sG3)(n0) + 17C3)(A,8). simtlarly, eB)(2),
n=2, %, . . . can be computed,.

Sten I1.~ The second stage of the method ig then to ob-

tain the values of ths streaam functien and its derivatives
in the (M,B8)-plane -~ that is, to evaluate the expressions?

vne) = 300Gt o ey » 1 e ey w L L
+ 1@ (a0 () 4 .

(8 an) = miany, 1(¥)(an) = Laenehen, . L, (22)

L<n)(zx) - {8n)t H(zX)Q(n)(BA)
28n!

Ve = O (atm g, + RO (a0 (0 0) 4

+:R(n)(2A)T(n'l)(%,6> + .. . (23)

bg(n8) = 18l (mme g, + L2 an)s (Odn,0) 4 L L . .
F 1™ ansa-n gy + L L L (24)

Since 1t 18 assumed in this case that tﬁe,speed at
every polnt of Dz ie considerably smaller than that of

sound, the expression (8) is replaced here by

v (7 0) = Inm H(2M) I}(z) N zz égﬁgé Q(n)(zx>g(n)(z)]

'n=1_
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See equations (30), (81), apd (33) 6f reference 4., Since

the L(S)(EA), s =0,1,2,. . . are independent of g, they
can be entered os master cards once and for all, for differ-
ent valuees of 8 and different values of A; that is, they
are (G operatioua). Rer instan? on master eard No. 1 in
columns 1 to 6, the value of L o} (27) for s fixed value A,
say AOS is entered while nothing is punched in calumn 7 '

if L(% is positive; in columns 8 to 14 the absolute value
of L(l)(ek) is entered, and in celump 15 the number 1 is
punched, if n{2) 44 negative, and so forth.. Similarly, :on

master card Ne, 2 the corresponding values af Lis)(anl2))
are punched, and as forth.

The romainder of step II consiste-of (? ?peratiedu).
Frem previous campusat%ogs the values(o§ ¢ ) ?) kK= 0,
1, 2,. . . for and @ = B‘° g\l , and Be

" forth, fer A = A(;), 8 = 6(0), B(l); 9(2) and,so “forth,

are. obtained; both sets of ecards, that is, the  L(%) ang

p(s) arr thes put 'into the multiplier, which _then. yfalda-tha
values oi (22) for-the set of pgints (alo), glody, '

(o), i)y (x(l), aCody, (a(2), glady, ..,

(k(z) (0)). (K S l)) . « And VYyp -and”"VYg ‘- may--be
obtained in similar faqhion. The .values of VY, V,, Vg ob- .

tained fer 4hs eac&“under*consideration are. givnn in tables"
11 2nd 12. T

gw.- he valun&-o ~ {K(°J, S(K)).'K'= 0,1.2,. . .,
/A (ale Vg (k(o “)) are plotted on graph paper-
along the abqeisna of which the values of 6 are given. 3By
uging this dLagram, the- values of 6 can be determinEE—YBr'":“
which W(A(°), 8) =.constant, say, O = 0.1, *0.2, and se
ferth, The values- of W§(A(°), 8) .and of WG(A(G)' 8)’

corresponding to W(k o) , 0) = constant may then be deter-
. mine%. This procedure is then repeated for different values"
of .

See table 13 and figure 13,

{x)

Step III.~ To- every value A y ®=0,1,2,. . .,. the
‘values of G(KT) were determined feor which :
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- - ﬁmx(n) , G(nT)) =T = cqnstant (25)

&8s well as the corresponding values of Tﬂ{(k;e) and we(k.e).
Tatles (or figures) of +v2, 1 - M2, 1 . 4 can be

pv?® dv

prepareqi.which. since tﬁese éuantities are functiqns of A
alone, have to be computed only once, that 1is, they are (Q
operations). - - o

The image of'a atréémline (25) 1n the Physical plane 1is
glven by .

v
x = 2(v) = *//}Po cos 6[. WZ(l - %)« vaulva:Lv
) pva Vg
’ '~°v '[- ] (26)
y = y(v) = */)Po A AR R 7 av
o~ PVB Ve

(See equation (19) of reference 4.)

The integrals (26) will be approximated by the sums

s=
x = x(vz) =Y AXS(T)
L.
8§30
(27)
y = ylv,) = Ej sy (7), 1 =1,2,8,. , .
B S
p s = ()
Ax, = 2 [WG(ST) (1 — MSE) + vSEWV(ST) J-EEE—E-——— Av
PeVe? _ WG(ST) 8
= (e71)
p (s7) 2
sy, = -°-:[we (1 - M%)+ VBZWV(ST) JEL Av, | (28)
Ps¥q We(ST)
Avg = v - v - _
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The remainder of step III consists of (S operations).
By using tables for squares and the reciprocal, the values

2 2
of WQ(ST) , wv(sT) and _—%:?7 are determlned, together
WB - - S

with the previously described tables for 12, 1l - Ma, and
pv

go forth. The quantity

_Po T (s7)? 2 a, (s7)3] _8%s_
Pv e (W 8T/ (1 - s) + Vg W& 8T ] WQ(BT) (29)

is determined with the use og punch cards Bquation (29) is
then multiplied by cos e ST and sin § 8T) to yleld the
first and second terms of equations (28), respectively.

Since the cosine and sine may vary in sign, an extra _
column must be provided with each terw of the product as de~

scribed previously. The carde uite pvy 2n the muitiplier
which is set for prosgsessive toroliug, tus valuas (27)
which correspond to (25) taen resulting. T m—

3. Description of the Second Method Tor the Comnstruction of-

a Compressible Fluid Flow

As indicated in sectlon 1, this mettcd will often be
applied if the local iiazh number 1le znacsly L. Fer this rea-
son, in contrast to vae eornslier avlozr-nf sgecrion 2, 1% 1s

now necessary %o use ite eaacs formuiat (8), that is,

i

r — Wy h
Y(A,8) = 1im wm{A,G) InaHiEh){%(Z)+lim (é" (n) (n)(z)]

m-»oo

Im L(°)(B7\)g(ﬁ)+lim S‘ L( 9(27\) (n)(z)}

m>c —
n=1 X 3¢

z fn.1
(n)_v/' &
g = [ ... e(glag,. . . at,,
J J . .

{
L0zn) = mzn), 1{P(am = 2B g (2 (an)
5 “nl
1A nethod for determiring the Lm(nj is given in appen-
dix I,
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Ag indicated in refsrence 3, sections 9 and 16 (see alsec

appendix I of the present paper). 1f AN 1s considered only
in o range A € Ao < 0, where Ag 18 & fixed negative num-

ber, then a fixed m can be determined so that equation (6)
cen be replaced by!?

1 -
Sl + Vgg) + Fp¥ = O - (e

The solvtions of-(Z1) are given by

() = il e » ) n (P ene @) (2

n=1

In the following it will be assumed that A, 1s a very
small number, say A, = -0.01 (i.e., that the flows with
local Mach number = M, = 0,99 can be considered)., Then m
will be a very large but fixed number.

Remsrk: In order to avold confusion, all quantitises which
depend on m will have & subscript m; however, it 1g neces-
sary to bear in mind that in this section m 1is a very large
but fixed quantity, which remsins unchanged in all considera-
tions of this section. '

Ag lndicated in sectlion 1, in this method, certain tables
can be employed which are independent of the flow and which,
therefore, can be computed once and for all, and used in all
subsequent computations.

'Since N does not satisfy the hypothesis of theorem (83,
equation (6) was replaced by eguatiop (31), where Ny does

satisfy the conditions of the above theorem and differs only
slightly from N for values of A smaller than Ag < O,

And Ao ecan be taken as near zero as desired.
In appendix I a method is given for determining N, for

a given ko wlith any prescribed degrsese of accuracy.

Note that instead of i(WAA + WBB) + Npvp = 0 in appen-
dix I, the equation. i(wik + wse) + Fyy* = 0 1 employed.

This last equation ig obtained from (31) by means of the
transformation (41).
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A, Description of Two Kinds of Tebles
1. If a sufficiently lar e number of the? L(n)
computed, the functions X P/(v, G) + i¥g (3P+1)(V 8)

correspond to g(2) = ZP; that is,

Xm(zp)(v,e)'.,. 1)(;&213"‘1)_(;,6) = H(z?\)zp

+ Sﬁ Lén)(zk)zp+n (p +1). .. .(p +n) (@ operatioq)

31

are
which

(33)

where 2 = A - 18 and M is given'by (5), may be deter-

mined.
Remarik: In the case of an incom ressible fluid where
N= log v, H(2A) =1, and ( (2A) = o, = 1,2,. .

corfeéﬁonding functions are

xfap) = Re (log v - 10)P~ %

WEPH) g (1og v - 18)P7?

(34)

Analogously, as evesy function of (34)°is a solution of (3),
every function Xm p = 0.1, . «.1s a solution :of (31),

and since for A < A,, N practically equals N,

one of these functions is & solution® of (6).
2. To every function xip)(v,e). p = 0O, l,.'.

two real functions are determined:

b

every

}See appendix I,

Exactly speaking: An approximate solution of (). 1It,
however, does not differ essentially from the corresponding

exact solution of (8).
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(p)( ) ZV,e)pa{ —(1 _ Ma) cos O ax(?) 7
v,§ =_ == i : = 36
(0,0 P
sin @ ax£p>J av [coa 5 3xiP) stm g axép)]da1
v dv 3V v 30 . _J
(v,8) ,
(p) Po T-(1 - M®) sin 6 ax4P)
Yo (v,€) -2 [ = =3
A(o’o) P M
cos 0 ax&P)J av [Bin o 3X&P) , cos 6 axép)] ae}
v av J

ov v bal’}

Reomark: - Since the above integrands are complete differentials,
the values of the inte§rals are independent of the path of in-

tegration (G operation

Remark: In the case of an incompressible fluild, there 1s pb-

tained for the corresponding funections X(P), 1(p) the ex-
pregsions:

x(#p) (p - 1)°* pv(p'l) gin ((p
Y(zp) = (p - 1) pv(P*l) cos ((p
£ (3p+2) _ (p - 1)°° pv(P—l) cos <(p _ 1)6)
(2p+1) -1 pv(P_l) cin ((P

] !
=
Nt g
T o
NS

I
]
~

T

!

-
A

D
.\./

(p

In the following it is assumed that the above-described
functions, xgp)(v,e) and xép>(v,e) Yép)(v.e) are computed
for a suffliclently large number of values of p and tabulated

for a large number of values of (v,8).

B, Determination of Flow Using the Above-Described Tables

Stex I: Determination of streamlines  Vp(v,6) = constant

in the hcdograph plane: According to the assumption of sec-
tion 1, the function g(2) can be represented in the domain

Dy, in which i1t will be considered in this section, in the
form of a Power series

>(35)
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g(z) = Z Gapsy * 105587 (36)

where ap are real constants., For 8 sufficiently largse,

the pewer series (36) can be replaced in D,; by the poly-
nomial

s . -
Ez,(map+l + imap)Zp _(37)_

p=0

By substituting (37) into (30) and by observing (33), there
is obtained for the stream function Y, ' corresponding to

(37) ‘
Inm {:}: (P)(zk) zz CICELN : g P )}

n=0 p= (n+1),..(}fp2_

e [Z (g H1p) (Xmap’*-ixézl’”’)}

8

. p=3s+l
}j <@széap. +@ap+1xéap+1)> - }j “pxép)_ (38)
p:

wh(v,e)

Since, as a rule, it is necesesary to determine the values of
Xm(v,e) at many points, it is convenient to use punch cards.

Tor every polnt (v,8) a master card ie prepared, and in
this, in columns 1 to 6, the value of X&O) at the consid-

ered polint (v,8) 1is entered andsin general,in columns

6p+l to 6(p+l) the value of me (G operations).

Since mp can be positive and negative, (28) will De

represented?! by -
2s5+1 . 28+l

+ :
Y (v,8) = }Z @PX;P)(V,G) - Ez me (v 8) (39)
p=o A p=0
Bach of the sums in +he right~-hand expression of (33) can be
easily evaluated for a 1lirse anzder s{ 29izts uslaz panch™ ~°7
card machires ¢S JJ’Tutih“h) The curvaes- ‘wm v,8) = constant
can then be delerminel by interpolation,.

1ot = max(e,0), @~ = max(-a,O)
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Step II.- Trangltion to the physicnl plane,- To every
point (v,8) of the hadograph plane thare corresponds a point

(x,y) of the physical plane, which is obtained by writing

x = x(v.6) _L/ﬂ(v’e)gg<{[_ (1-¥%)cos 8 Yy _ ein ® awm] dv.\
' ( ) e v a8 . 4 v
0.0 2g5+1
+ [cos 8 ¥ - sin 8 an de} E; (p)(v 8)
) ov v
(v,e)
- o(v.g) = _Pg {[_ (1-M*)ein 8 By, L cos 8 GWé} av
¥ AN (o.0) p ve o8 v v
’ 2841 .
+ [sin ) SV +_°°5 d a\lfdeel Z (P) v, 8) )
ov v 2o

See reference 3, equation (136); alse equatione (35) and (38)
of thies paper, .

Let Yn{(v,8) = ¢ = constant be a streamline (in the
hodogravh plane). To every value of v on VYu(v,8)

there cerresponds a value® of 6, say 6{(v), which can be
easglly determined by interpolation or directly from the dia-

gram for the VYp(v,@).= constant,

By interpolation (and t?e use of th? ables described
under - II) the values of X (v,0(v)), P

termined, BSubstituting theae values lnto (40) gives
the coordinates (x,y) ef the streamline Ypg = ¢ 1in the phys-

ical plane (8 operatioﬁs).

Remark: Olearly, in erder to apply this method, %t is suffi-
cient that the function ¢g(Z) can be anproximated in the
domain under consideration by a polynomial

8
Z[m(s) + 1(1,(8) -I z};

2p - 2p+lJ
P=d

On the o%*her hand, by BRuange's theorem, an ahalytié“fﬁnction
can be approximated by a polynomial in every simply covered

> (40)

(v,8(v)) are de- "

1
Or several valuss, eay, 91' Bos + o .y en,
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and simply connected domain. Because of this fact, the
method described in this section may be applied not only
when D, 1is some region which lies ineide of the circle of

convergence of (36) but for a much lérge:_class of domaine.

CONCLUDING REMARKS

A method of obtaining a subsonic flow pattern of a com~-
pressible fluid from a given analytic functilon g(2) 1s de~
scribed in this repnrt. The amount of time and labor nesdsed
for this method is reasonably small once certaln tables have
been prepared.3 These tables are completely independent of
the flow, and conseguently once prepared, the prodblem of de-
termining the flow pattern may be regarded as solved, not '~
only from a theoretical but from a practical point of view as
well, : :

The present method yields only subsonic flow patterns,®
but by combining these with those described in section 17 of
reference 3, it will then be possible to construct mixed,
(i.e., partially supersonic) flow patterns, from & given
function g(2). —

*The method deseribed in this report, end references 8,
2, and 3, 1s a generalization of the determination of flow o
patterns of an ipcompressible fluid from the complex potential
g(t) = p(ilog v,8) + t¥(1og v,0)¢ = log v - 16, which poten-
tlal is given in the logarithmic plane. ' o

Lssuming that the necessary auxiliary tables have bsen
prepared and that punch card machines, are available, %the
amount of labor needed in determining the pattern of a sub-
sonlc flow corresponding to a given function g(2) will only
slightly exceed that needed for determining the flow attern
of an incompressible fluid from a given gf(lug v e,ie?.

®The author would like to emphasize that the tables of
sec. 9 of reference 3, and those of the present report (the
former are only an approximation to those of appendix 1) serve
merely to l1llustrate the procedure. The functions are com—_
puted for comparatively few values of the arguments, and hence
by ueing them it 1s possible t0 obtain only a rather inaccus
rate picture of the flow pattern. '

3Note that a similar method can be developed for purely
supersonic flows. ©See appendix III,
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A method for determining various flow patterns ia, of
course, only the initial step in the study of compressible .
fluld flows, since the serodynamicist 3s, in the main, inter-
ested in determining the influence of different factors such
as the shape of the profile, the maximum Mach number, and se
forth, on the flow pattern.

By the choice of suitable functions for g, it should
be possible to ohtailn many cases of flows which are of éon-
siderable practical interest and value 'in studving varioua
phenemena in the theory of combressible fluids.?

Remark: As has been emphasized in the tntroduction, it ia
frequently of considerable importance to selve the "direct!.
problem determining the flow in the physeical plane around a
profile, which flow behaves i1 a prescribed fashion at in-
finity (i.e., far from the profile). Although in many in-
stances it 1e pessible® to determine the function g£(Z) o
there is obtained a flew arocund a profile approximating the
given one, it seems dosirghle to have a method of solving.the
"direct® problem, and to determine when solutlions to this
"direct" prodlem do or 4o not exist, The author hopes to re-—
turn to this question in a future report,

Brown University, _ . . :
Prpvidence, R, I,, September 6, 1945, T

As has been indicated previously, the examples odtained.
which correspond to the Ohaplygin solutions cannot, in -
general, yield the entire flow pattern (in .the physical plane)
around a closed profile. An exception to this has been the
work of Karmén-Tsien (references 6, 7) but in order %o &ac~
complish this they have substituted for the true adlabatic
pressure - specific volume relation, & linear approximation ) .
to 1t. - R - - ) . -

Vil .'I‘

0nce = sufficiently large'numﬁer of flows corresponding
to various functions g have beon "catalogued,"
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APPENDIX I

(n)
THE DETERMINATION OF THE Qin) AND Lm

The operator (8) (see also secs. 9 to 11 of reference 3)
was obtained in the following wanner: As was proved in refer-
ence 3, the function Y(A,0) satisfies equation (6) wheres- lN
is given by (7); A =and ¥ are connected by relatlon (5).
Every solution Y of (6) can be written in the form

Vo= H(ZN)Y (1)

where H is given by (reference 3, (111)) and Y* satisfies
the equation :

Z §5¥5 __m_ + Flan)y™ (43)
F(an) = - L [5(1 + k) 12k ., 2(3x - 7)
T8 (1 -¥%)3 (1. ¥%)32 1. uM°

r 4k + 2) - (3K -« 1)(1 - n")}(‘;s)

L
.

In order to determine T(Zk) it is necessarv to compute ' N
as & function of A from (5) and ‘then substitute into (43),
The obtained function becomes infinite for A = 0 (i.e.

for M = 1), which ceauses certain difficulties. On the other
hand, since only the asubsonic case is considered hers, and
since a small modificatiom of the function F(ZA) practi-
cally does not change (in the subsonic region) the tclution &f
the equation it is esxpedient %o approximate F(2x), in the
range -= S A < Agyr 1Ag { sufficiently srell, by a fuaction

which remains fi n*te at A = 0, fer inetanﬂa by a polynnoxial
Fm of the m—?h degrse in e2", Ag was pra?ed in ref:rcnne 3,
(1 - M°)* cen be developed in a series in €27 ranely;

1By using the theory .of ;ntegral equasions, it ie possi-~
ble to prove the following Eheo”em Let B be a give=n o

bounded domain in which A = Ny’ Ko < 0 and-in which Fn
differs froa F by a suff;cie&uly smill amount. To svery
solution of (A, 8) .of 1/as4y" + F pf = O a sslution

v (A, 6) of 1/4A¢* +# Fy* = 0 can bs so -detefmined that

]w*(h §). - v (A, 81 ;J%(A 8)€B, and E is .2 given small posi-
tive number. . o -
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S=1+7T=x, + %(ak + 1)::1a + 0. (44)
5 k+1 -
(x + 1),1/a - (k- 1) =N
X, = 2 ( ) o2

O AL ]

This series converges for ~o < A< 0. GBubstituting k = 1.4
into (44) yields

3
H
[
P
o
»
P

=

1l
el
)

o
-
o

|
!

a_ x
n=o - n=o
and ) & T o -:
-l n n
T o }Z B x, = Ez b, x (46)
n=0o . nso -
x, = 0.239 &2
x = e2A

The values of Ayy apy By b, are given in tadle 1,

Since (45) and (46) converge for -e < A < 0; for - < A <Ay -
wvhere Ae < O 1s a fixed quantity, 1t is possible to approx-
imate (45) and (46) by polynomials

it}
Tm = Z aneaxn (47)
n=1 ; . -
and m
-1
(" )y = E; v, 02" (48)
n=1

By substituting these polynemials into (43) instead of ———l——i
a8 (1-47)
and (1 - M )*®, respectively, poelynomials of approximation,

Fn(2A) in eak. are obtalned. Clearly, if a given degrese
of accurecy is required, m will increase as Ao apprcaches

0. By pletting T, 1/T, T, and (1/T), for a given m and
comparing the corregponding values, the upper bound Ao of
the values of A for which |[Fp(2A) - F(2N)| 1s sufficiently
small, may be determined,
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TABLE 1
n ~-&n —&n Bn bn
0 -1 -1 1
1 1 .2392 1 .2392
2 1.9 .1087 2.9 .1659
3 4,81 .0658 9.61 1315
4 13,939 .0456 33 .869 .1108
5 43.68 .0342 123,696 .0968
6 144,02 .0370 462.39 .0865
7 492.11 .0220 .07886
8 .G18% .0724
9 .0158 .0672
10 .0138 .0629
For instance, in thelcase under comasideration where
m = 10, the values of T and Ty, are given in table 2 and
plotted in figurg 1l6. As can bs seen from figure 16,
A< Ay = 0.11 (1.e., M = 0.,75), PF,.(2A) 1is practicau'y -

equal to F(2A). If a good approximation is desired for
bigger values of A, mere coefficients® anp, bp must be com-

puted. In order to check the obtained values of ap, as

function of n, see figure 17,

The coefficients Qin)(zk) of the operators which yleid

solutions of the equation wzg + Py =0

the same way as derived in reference 3, from which refsrence
the results are obtained

can be obtained in

It may be remarked that other methods of obtaining ap-
proximeting polynomials for ¥ exist. These will not be
investigated in the present report, despite the fact that
they merit conslderable attention.
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The values of T, M, and Tjo

Table 3

NACA TN No. 1018.

22 .0 1 11-1*2 = M
0.0160 043644 0.300 0.954
0.0195 0.44,208 04320 0.947
0.0230 0.44758 0.336 0.942
0.,0265 0.45300 0.350 0.937
0.03C0 0.45835 0.365 0.931
0.0335 0.46360 0.380 0.925
0.0370 0.46877 0.390 0.921
0.0405 0.47385 0.401 0.916
0.0440 0.47885 0.412 0,911
0.0475 0.48377 0.421 0.907
0,0510 0.48861 0.430 0.903
0.0545 0.49338 0.439 0.898
0.0580 0.49807 0.448 0.894
0.0615 0.50268 0.455 0.890
0.0650 0.50723 04463 0.886
0.0685 0.51170 0.470 0.883
0.0720 0.51610 0.477 0,879
0.0755 0,52033 0.484 0.875
0.0790 - 0452471 0.491 0.871
0.0825 0.52892 0,497 0.868
0.0860 0.53306 0.502 0.865
0.089% 0.53714 0.507 0.862
0.0930 0.49225 0.512 0.859
0.0965" 0.49790 0.520 0.854
0.1000 0.54902 0.525 0.851
0.103% 0.55287 0.530 0.848
0.1070 0.53639 0.535 0.845
0.110% 0.56040 0.540 0.842
0.117% 0.56771 0.550 0.835
0.121C 0.57129 0.554 0.832
0.1245 0.57481 0.559 0.829
0.128C 0.57829 0.563 0.826
0.1315 0.58172 0.567 0.823
0,1350 0.58511 0.571 0.821
0.1385 0.58844 0.575 0.818
0.1420 0.59173 0.579 0.815
0.1455 0.59498 0.583 0.812
0,1490 0.59818 0,587 0.810
0.1525 0.60134 0.591 0.806
0.1560 0.60446 0.594 0,804
0.1595 0.60754 0.598 0.801
0.1630 0.61054 0.601 0.799
0.1665 0.,61357 0.604 0.797
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A
(1) /P )
= =4 Fm aa
(3) 4 1 ()% (49)
m T B T * € n $
(3) . _ 4 3 ¢ F (1)_2 F,° aa +.l_q(1)3
A T T 15 nla 15 40 ¥
-0 -

APPENDIX II

THE EQUATION (IN THE CANONICAL FORM) FOR TEER POTENTIAL FULCTION
AN APPLICATION OF INTE2GRAL EQUATIOKS TO THE

THEEORY OF COMPRESSIBLB FLUIDS

1. In section 6 of reference 8 and section 7 ef refer--
ence 3 the equation (in canonical form?) for the stream func-
tion has been derived. See equation (6. 8) of reference 8 or
(48) of reference 3,

There are instances, however, where it 1s more conven-
lent to operate with the potential function ® rather than
with the stream funetion .

In this section the canonical form of the equétion for
¢ will be derived.

lBy introducing suitable new variables tE = t(x,y),
= N(x,y), every equation L(VY) = anx +. Bbny + cW + dl,

+ eV, + gV = 0 of elliptic type can be reduged to the form
Ve + wnn + AWE + BW + OV = 0, so-called "canonical form of
equation L, (See reference 9.)

In the case considered in the present section =x = H,
y =6, and E =7, T = p.
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Functions ¢ and  satlisfy the system of equations

(3d/d6) = (dy/aH), L(H)(3y/38) = -(3¢/3H) (50)

[[dquation (6.21) of reference 8 and equation (30) of refer-
ence 3]

where
(aB(v)/av) = p/v, 1(H) = (1 - M®)/p® (51)

[equations (6.1), (8.18) of reference &; oquations (42),
(43) of reference 37,

If, now, the new variable ), given by

%

(anfad) = (1 - ¥°)%/p, that 1s, (aMdv) = (1 - M®)

i/v (52)

[équation (6.4) of reference B and equation (48) of reference
3), is introduced (50) bveconmes

¢g = P "1 - Ma)iwx. P~ (1 - Ma)iwe = -0y (53)

Differentiating the first equatlon (53) with respect to g .
and the second with respect to A yiclds

bgg = p (1 - Ms)iWAe (54) ]
p~ (1 - MB)%WAQ + [d(p—l(l - Ma)%)/dk‘¢g = Py

Replacing the first term of the second equation of (54) by
bge and Yy by -p(l - M )_%¢R (see (53)) yields

%)/de¢x = 0 (55)

dpg + Pan - p(1 - MB)-ifd(p—l(l - M)
Now, by the second relation of (52)

pl1 - M*)~ -% fd(p (1 - M )%)/dh]

= p%(1 - M®)? (v/p)fd(p’l(l - Ma)#)/dv1 = 4N )
4 - y -
_(x + 1)M (1 - u3)~%"2 (56) .

2
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[equation (6.8) and errata of reference 8, or equation (47)
of reference 3], Thus, the equatioan for ¢ becomes o

i

by + bpg ~ 4ANGy

9

4 [égz - N(dg + ¢Eﬂ =0  (57)

xv)

2. A caee in which it is nmore- advantageous to’ consider
¢ .rather than V¥ is the following: ) ; .
can In sectlon 7 of reference 8 and in section 13 of refer-
ence 3 singularities of functions satisfying equation (8)
. were consgidered. As wass indicated there, o _flow with. a
"vortex-like®? singularity at . (A°, 6°) .is obtained if for
~the stream function, the so—called fundamental solution

W*(x,é; A(oj ooy . S ST T

[o]

- 40T (o), t‘<o>) log It -t + s'cz,f; g (o), Z(o>> (58)

[equation (7. l) of reference 8; equation (119) of reference 3]

- - —

§=A"'1el -53)\"'16 . Tt REEIECI

is taken. o L _ e oD oo

As was explained in sestion 14 of reference 3, it is Im-
portant (in connection with the transition to the physical o
plane) to have (working in the A 8—plane) singularities the
derivatives of which with respect to A “and. to 19 ‘are :
eingle—valued functions of A and’ O, S =

The point . §(°) corresponds to the pdint zﬂ= ® ¢ of the
physical plane, and if for the potential function. ¢, a .
fundamental solution’ ST

aAx( ¢, ?‘ §(°) §(~Y) log it ;9[ . B*(§ E t(o) §(~Y) (59) I

of (57) is taken, a flow with a “source-like“ singularity 1g
obtained. (Expression(59) and, therefore, its derivatives are
eingle valued functions of A kaﬁd 6.)

-

At em = -3 f. oL Sl e po gt L

. The names "vortex-liks" &nd "source-like" are used be-
cause in the case of an incompressible .fluid (and ‘in the phys-
ical plane), in. the case of g .vortex .the strean function is

1ven by m log Iz '~ 2z°{, 'and in the case of a source the po-
tential function 1s given by ¢= m log lz - 2%, m ‘being a

real constant. (See reference 10, pp. 19f =nd 320.)
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A eingle-valued soluz ?n of (57), which is infinite of
the first order at may be obtained by taking the’

derivative with respect to 8 of (59).

3. A prodblem of considerable interest ig that of deter-
mining & flow of a compressible fluid around a given profile,
or at least around a profile the shape of whlich approximates
the given profile. BSince, in many instances, by reasoning
from the incompressible cagse, the approximate image in the
hodogreph or (A,e)—plane 18 known!, it is possible to con-
eider, lnestead of the above problem, the question of deter-
mining a flow for a glven hodograph, and the behavior at the
point of the hodograph corresponding t0 2 = o 2 is prescribed.
Clearly, instead of the image in the hodograph plane the image
in the (A,8)-plane may be used, If the results of section 7
¢f reference 8, section 13 of reference 3, and those of sec-
tion 2 of this appendlx are employed, it 1s posslidble to deter-
mine & function Y,(A,8) satisfying (6), which possesses
the required behavior at » = «, Naturally, V¥;(A,8) for

the point® (A_,8,) must have a singularity which satisfies

the condltions indicated in section 14 of reference 3, in or-
der that the flow in the physlical plane will be a flow around
a closed curve. (See, in particular, equation (148) of refer-
ence 3.) Function V;(A,08) 48 as yet, not the required
stream function, since it does not assume constant values on
the boundary of the domain. In order to determine this func-
tion, 1t is necessary to find a solution Wa(% 6) of (6)

which 1s regular in the domain H,, and whlch assumes,
on the boundary h, - of H;, the values

‘The image in the logarithmic plane of an 1ncompresaible
fluid flow around a profile P 1s often used as a first ap-
proximation of the image in the AB-plane ' of the flow of a
compressible fluid around a profile similar to P, See figs.
4, 5, and 6, where the boundaries (and some etreamlines) of a
flow around a Joukowskl profile in the physical, hodograph
and (pseudo-) logarithmic plane, respectively, are given.

®The coordinate g refers to the physical plane.

®°Ths point (A.,8,) corresponds to the point gz = o of
the physical plane. ‘ . .

Since the domain Hy; extends to infinity and, in gen-
eral, is multiply covered, it is necegsary to alter somewhat
the method of attack to be described, by mapping H; conform-
ally on a finite and Schlicht domain.

For the sake of brevity this atep will be omitted in the
following.
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(Ap,8y) Deing an

Wz(khseh).= —Wl(kh’eh) (60)

arblitrary point of h,.

Function WVg(A,8) can be determined using the theory of

integral squations.

Indeed, let VY (A,

(See footnote 8, p. 281 of reference 2.)
8) be that harmonic function which assumes

the prescribed values on h;, then

satisfies the equation

(61)

: B
Aw4 + 4N

and vanishes on the boundary h,.

By employing

classical results VY, can be odbtained as

the solution of the integral equation:

\1;4(\;;,9)

Vs

where G = G(A,8;

3 (4NG)
Bnééfiaxl WQ(KI,Gl)dkludel + v
—Zﬂ‘467;N =2 G dr, 48,

A;,87) 1is 6reen's function (of Lap1ace 8

equation) with respect to the domain H,. -
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APPENDIX III

A METHOD FOR DETERMINATION OF STREAM FUNCTIONS OF

PURELY SUPERSONIC PLOWS

1. As indicated in reference 8, section 10 snd reference
3, section 16, the approach developed in these papers makes
1t possible to construct mixed (i.e,, partially subsonicé and
partially supersonic) flows by use of the following procedure:

In pteceding papers two methods have besern described
(one gilven by Chaplyzin, the other by the author!), which
yield certaln types of particular solutions ¥,, the stream
function of a compressible fluid flow. (See sec. 8 (8.3),
(8.8), (8.22) of reference 8 and sec. 2 of reference 2.) The
y represent gtream functions of flows, which, in general,
inciude subeonic and supersonic Ffegilons.

As was polnted out in detail in reference 2, sectlon 3
and in the introduction of reference 3, the flow patterns
generated by the Wv mentioned above or a linear combinetion

of them Td4,\ly;, are of rather special character. In partic—
ular, the flow patterns with stream function ZG,Y¥,, cannot
(in general) represent an entire flow around a closed body.

Frequently, in the theory of analytic functions of & com-
plex variable in a similar situation (i.e., when one expres-
slon of & certain kind - e.g., powsr series -~ does not repre-
sent the functlion, say, £, in the entire domain B in which
the furction has to be considered), the procedure employed is
to deccmpose nB into smaller regions, say,into 3Bgx, X = 1,

y¢ 2 o, 1, Kzi BK = Bn (see fig. 7) such that it 1s possi-

=1
ble to find in every region Byg, another analytic expression,
say, fg, which reprecents f 1n thst region. Gencraliszing

YBers and Gelbart, in reference ll, ottalned the came
solutlions independently of the author. They denocte the funec-
tions Py + iwv as Z-monogenlc functions, Here Dy is
the potential funotion which correeponds to the stream func-
tion . : -
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this method of repressntation of a function of a complex vari-

able, the author described in section 10 of reference 8 and

in ssction 17 of refsrence 3 a method for representing the
stream function and in a similar manner; that is, in decompos-

ing the domain B into parts Bg, and representing ¥V in

every By by another analytical expression.

In order %o apply this method? a representation for a
purely supersonic flow is frequently required.

A method for geherating purely supersonic flows, con-
pletely analogous to that developed for the subsonic case.
will be given in this appendix.

2. The equation

s(¥) =('Ep-€l>‘e (1 - u°) »2%’ + %{g—‘g -0 - (83)

(equations (43) and (6. 2) of references 3 and B, respectively)
serves once more as the starting point for the following con-
slderatlions.

In order to write the equation for Y 1in the "canoniceal
form"®?, it is. necessary %o introduce new variabdbles ' §,7].

€ =06 +p(M), T = -8+ B(M) (64)
/-'v"a(ma - 1)?&-«3 )

B (M) =V/ﬂp”lpo(1«':2'-. 1)*&3 =
: o

= [% tan"l(h'(M2 - 1)%) - tan~ T(M® - 1)§] >(65)

AT | |
h=/x5T E>1 )

“It may be noted that purely supersonic flow patterns can
cccur uvon considering flows in channels or around & 'body with
a cusp, in which ceaese the flow has no setagnation point.

where

-

®Since in the supersonic case M > 1, "equation (83) is
of hyperbollic type. By introducing suitable variables £, T
every equation of hyperbolic type can bhe transformed 1nto the
so-called canonical form . win-+ AWg + BW + 6V = 0., " : 1
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Bquation (63) then becomes
Ver + 4(¥g + ¥py) = 0 _ (66)

where

~3/a

A = %(k + M (M® - 1) (67)

The function (t4+m)

y* = By, H = exp [/P A(s)ds] (68)
gatisfies the eguation i )

Wzﬂ - PYy* = 0, F = A% + (daA/ds), s = E + 1 (695

3. By use of considerations similar to those developed
in references B and 3, the following theoremes can be derived:

Theorem I.~ Suppose that PFp 1s a function which pos-
gsesges & continuous first derivative. Let Ei(g,ﬂ.t) and
ES(E,N,%) ©be solutions of

3%8; 3B, 3%} "
l"'ta“_"'_}‘-—-]-' L 1 _F R = 70
( ) ==t taﬂ+2t£{:agan 2 ]=0 (70
and 3. L 2. _ ¥
a°m i B
(1 - ¢7) 2 L2 4 gy [a 2 . FmE:] = 0 (71)
dEdt ¢t Bt atan

respectively,

Let E, and B, possess continuous second derivatives,
end let (BEI/BE)/nt and <aE;/an>/gt be finite for t = O,
Then ' - -

ulg,n) =L/p Tﬁ (E,m,8)¢, (li(l - % ))

+ B <% Nyt)E ln(l -t ))J (1 - a}f*

hga | (72)

where fK, K = l; 2 are two arbltrary, twlice ccutlnuoualy

differentiable functions of their respective arguments, is a
solutlion of the eguation
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3 ;
U _FuU=0 (73)
ofan o
The proof of this theorem is given in reference 12, section 2.

Theorem II.- Let ¥ _(B) possess derivatives of all or-
- ders in the interval By S B S By, 0< Py < By <> Ifa
constant ¢ exists such that the inequalities

K . " 7
ld le < olk + 2), K=0,1,2. . .. Bo< B <B, (74)

ap¥ gk + =

obtain, then there exist solutions B,(f,T,t) and B (§,n,t)

of (70) and (71), respectively, satisfying the conditions of
theorem I.

*®
By substituting the functions Ex, K = 1,2 into (72)

for the By, thers is obtained a representation for solutions
of equatlion

Uiy - Tav" =0 (75)

4, There exlst various cther integral representations of
solutions of (89) in terms of two arbitrary functions of one
varlable. One such representation, differing from that given
in the preceding section, will be discussed hsere.

Let R(t,N:;t%,N*) denote the Riemann functions of squa-

tions (89), (see reference 9., p. 22) - that is, a funchion
of the four real variabdles E,N,E",N%, which satisfies equa-

tion (B89) for every fixed (£*,7M*), and which further has the
propertles that.

R(E,M5E7,07) = 1 '}
A _ : : © {78)
RCE™, ;e .0 ) = 1



N¥ACA TN No. 1018

50
This function (for (69)) may be represented in the form

R(E, n ﬁ* ) = f [ F(E,,n,0a8; an,
g*
J/w u/ F(E,,M,) “4: 'P(t,,N5)4E, an, aty ang - . . L(M)
e

(See reference 8, sec. 7.)

(0ym)

/ >t

(¢,0) (0,0)

(gsﬂ>

The clagsical theory of partial differential eguations of
hyperbolic type yields the following results:

be any two arbitrary differentiable
and 1f u satisfies the dif-

then

Let fyx(K = 1, 2)
functions of one real variabls,
ferential equations ugy + Fu = 0,

4

u(t,N) = u(0,0)&(£,0;0,0) f//’ate;n;t*,o>f1<e*>ag*

no 'ﬂ |

+f R(E,n;0,M%) g, (M¥)anx  (78)
J, , .

the Riemann function associated with the

(R is, o5f course,
differential equations satisfied by wu.)

Remark: A representation of the form (78) is a's~ «nlii for
the subsonic region.
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Indeed, suppose that £ 1is replaced by ¢ = AN - 48, T Dby

T=x+16, ¢t* by ¢*, 1* vy T*, 1in (77), this trans-

formed expression will not differ essentially from the func-
tton x({,T) introduced in (7.4) of reference §.

If the complex variable ¢, 4instead of A,H, is used, the
equation for the funection ¥, 1in the subsonic case, assumes’
the form L '

w&zq-me* = 0

(equation (86) of reference 3)

a new repreasentation for Y* 4in terms of two arblirary ana-
lytiec functions h,;, hy of g¢ne complax varlable may then be

obtained:
LT = ¥t (0, 0)R(E.T10,0) + /p RETT L oy (tat”

+ u/“ (¢,T;0,T)n, (T)aT  (79)
A . S
(R is*t?e Riemann function of the differential equation

for Y . - Lo

5. It is of considerable interest to show that both (8) and
(72) are different forms of the same opsrator, the former ob-
taining in the same subsonic case while the latter holds in
the supersonic case. In order to derive this conclusion, it
1s necessary to develop further the method of attack initiated
In sections 6 and 8 of reference 3. The following result is
a slight generalization of theorem (E53) of reference 3.

Let E; %be a solution of

3

(2) (1 - %) 1 OB, 3B, ApgE,
A, 6 = { —————— a2

( b). = . Lt(A + 1) B AE OH *13% +2AHZ>]

t

3°x :
(1 - 2 )é'(AH aee *+ Sg° + 3?1> o~ (80)

'Note that A is a function of H slone and that

Aﬂ = QA Agg = ai%. Iﬁdeed, Ag® = 1(") = poap_a(l - M%)

‘and (E) A(M). (See sec. 8 of reference 3.)
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which possesses the property that

- t‘a El-\/z - %% Aggy (81)

<A H * e) t(A-+1e) T T o6(A + 18)

18 continuous at ¢t = 0, at A = O, and at- -8 = 0, then

+1

v(E,8) =_/P E,(H,8,t)f [ (A(H) + 18)(1 -~ &%) (82)
I T . 1 _ m—a'

-1

where f 41s an arbitrary, twice differentiable function of
one variable will be a solution of

AHE.%Z.§’+§H1§L'+B\L/=O . (83)

The proof of the above theorem follows step-by-step the
proof of theorem (63) of reference 3.

Denote by Ez(H,9,t) & solution of Gﬁa)(A,-G.t)

and obtailn the following representation for solutions of (83)
in terme of two arbitrary, twice differentiable functions
£f,, £f5 of one variabdle.

+1r

W, 8) =f {El(H,G,t)fl [.;_mm) L 16)(1 - tﬂ
‘—1 -
+ B(E,8,t)f, [E(A(H) - 46)(1 - ta)] 4t (84)
2 /1 — % 2

For M < 1, A(H) = A(M) (see equation (48) of reference 3)

is real and therefore { = A - 16, [ = A+ 18 represent
conjugate complex variables., For M > 1, A(H) = A(%)A be-
T + 9>

comes purely imaginary and therefore g = A+ 18 = 1
=1¢( and ¢ = A~ ip =1 (—-— ) where § and ﬂ are
the real variables 1ntroduced in (64) It remains merely to

show that (80) can be written in the form (6) for M < 1 and
in the form (66) for_ M > 1, Suppose first that M <1 not-

B .
. - 3E
ing that I, = 9E _CH _ 2 /b (80) can be written in the

fornm 3A  Ag 28/ 3m'
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a

1 - %2 2 3B B, 233
== 5 __ A 1 EH 1
R ) R —

-1 =]
+ A‘H 3 B, + aE.l AHH + BEl] = 0 (85)

3N 3A
Since

aaEl aEl a E 2 aEl
SEE - (aA AH)s =3 Mt 3h dmm

equation (85) can be replaced by

T YTt - o2\ otat | 2hg®

-+
+7 \ 3t = sAg® 3t

2 .
2/1 - t° Ay aw,y Agg aml> ahg” (aﬂl Ay . )
1

4pgR 3 Apg / .
+ H 3 E-}- + Hg BE:L + BEI + B El =0 (86)
M[I - g2\ otag Ag 8t ot 4AH3

£+¢ A
or introducing E,* = E, exp(\/ﬁ N(s)ds ) where XN = 4A§§
. [ttt \
Mg exp( —/ﬁ N(s)ds/ . 3 aaEl* 1 OB, *
L (L - %7) - - T
ffki - t2 ato % t 3¢

2Tt [aaml* e B E' *] 0 (87)
+ =

3yt afg® )t

B

If P + _an is replaced by ¥y and divided »y a nonvanish-

4Liy” ) _ .
ing factor, it i1s seen that (87) 1s essentially the same as
equation (7?5) of reference 3,

¥ote that t-lEj* of refarence 3 sghould bte corrected to

N
—t'l“g aad that (86) 1s the conjugn’te of equation (7 5) of

refercnce 3, 1.e., tho latver may be obtained from the former
by replacing ¢ by T and T by ¢. -
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Title: “/A as a function of M"

M /3 M /3 M /B
1.00 | 0.0000 1.47 | 0.,1921 5,90 | 1.4703
1.0l | 0.0008 1.48 | 0.1974 6.00 | 1.4827
1.02 | 0.0020 1.49 | 0.2026 6.10 | 1.4944
1.03 | 0.0039 1.50 | 0.2078 6.20 | 1.5061
1.04 | 0.0061 1.60 | 0.2590 6.30 | 1.5172
1.05 | 0.0085 1.70 | 0.3108 6.40 | 1.5279
1.06 | 0.0110 1.80 | 0.3618 6.50 | 1.5388
1.07 | 0.0140 1.90 | 0.4116 6,60 | 1.5491
1.08 | 0.0169 2.00 | 0.4602 6,70 | 1.5591
1.09 | 0.0200 2,10 | 0.5076 6,80 | 1.5629
1.10 | 0.0235 2.20 | 0.5535 6.90 | 1.5785
1.11 | 0.0268 2.30 | 0.5983 7.00 | 1.5877
1.12 | 0.0304 2.40 | 0.6413 7.10 | 1.5966
1.13 | 0.0339 2.50 | 0.6827 7,20 | 1.6054
1.3 | 0.0376 2.60 | 0.7229 7.30 | 1.6143
1.15 | 0.C415 2.70 | 0.7613 7.40 | 1.6225
1.16 | 0.0455 2.80 | 0.7983 7.50 | 1.6308
1.17 | 0.0494 2.90 | 0.8340 7.60 | 1.6388
1.18 | 0.0535 . 3.,00 ] 0.8682 7.70 | 1.6466
1.19 | 0.0577 3.10 | 0.9013 7.80 | 1.6542
1.20 | 0,0518 3,20 | 0.9329 7.90 | 1.6617
1.21 | 0.0%63 3.30 | 0.9637 8,00 | 1.6688
1.22 | 0.0707 3.40 | 0.9930 8.10 | 1.6761
1,23 | 0.0754 3,50 | 1.0213 8.20 | 1.6829
1.24 | 0.0798 3.60 | 1.0487 8.30 | 1.6898
1.25 | 0.0845 3.70 | 1.0748 8.40 | 1.6964
1.26 | 0,0887 3.80 | 1.1002 8.50 | 1.7028
1.27 | 0.0932 3.90 | 1.1243 8.60 | 1.7093
1.28 | 0.0981 4,00 | 1.1481 8.70 | 1.7155
1.29 | 0.1027 4.10 | 1.1707 8.80 | 1.7216
1,30 | 0,1C75 420 | 1,1926 8.90 | 1.7276
1.31 | 0.1124 4e30 | 1.2136 9,00 | 1.7335
1,32 | 0.1172 4.40 | 1.2339 9.10 | 1.7391
1.33 | 0.1220 4e50 | 1.2537 9.20 | 1.7447
1.34 | 0.1268 4e60 | 1.2724 9,30 | 1.7502
1.35 | 0.1319 4.70 | 1.2908 9.40 | 1.7557
1.36 | 0.1359 4.80 | 1.3088 9.50 | 1.7608
1.37 | 0.141%7 490 | 1.3257 9.60 | 1.7659
1.38 | 0.1467 5.00 | 1.3424 9,70 | 1.7710
1.39 | 0.1519 5,10 | 1.3585 9.80 | 1.7760
1.40 | 0.1567 5.20 | 1.3740 9.90 | 1.7809
1.41.| 0.16.9 5.30 | 1.3891 10.00 | 1.7858
1.42 | 0,1668 5,40 | 1.4038
1.43 | 0,1719 5.50 | 1.4179
1,44 | 0.1772 5,60 | 1.4315
1.45 | 0.1819 5,70 | 14451
1.46 | 0.1873 5.80 | 1.4579
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For thé case M > 1, a ‘gimilar procedure yilelds

2A exp(/ N(.sids : « o
H ) {(1 - % ) EEL_

13581 - a ﬂat

3PE, * *
+ 2t -~ B F ~ o (88)
: [aﬁaﬂ ' ( 4AH j[}

which up to a constant factor coincides with (70).

d-|H

APPENDIX IV

THE COMPLEX POTENTIAL IN THE HODOGRAPH PLANE FOR

A JOUKOWSKI PROFILE

1. In connection with the second method for the determi-

nation of (n (z) it 1s necessary to have an analytic rep-
resentation for the complex potential (in the hodograph plane)
of an incompressible flow around varioua profiles.

This problem will be treated in the following for a sym-
metric Joukowskil profile.

2. The function

gt = MNa + 2* + Nz*, 1> 0 (89)
maps the circle |g*|[ = a into the circle Jzt - Mal = a(1+M).
The transformation

1l /7 + a”
= - +  — ]
Z 3 (z z+> (g90)

maps Jzt - Tal = a(l + M) into a Joukowskl profile. There-
fore

a2

. Na + (1 + 7)e*
maps |[z*] = a into a Joukowski profile.

g = Nla + (1 + N)z* + (91)
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Since the complex potential around jg*} = a 1is
»
w(z*) = -V<z*eia b —22 Yo 1 Loiog 2 (92)
ghell 2 a

the complex potential W(z) = w{z*(z)] is obtained by subdb-
stitutlng the function

(z - 2Na) + 8 s = =(g2 - 4a2)i (93)
2(1 + 1)

o ¥

(which 1s the inverse to (91)) into (92).

W(x) = -V [Cz - 2Ma + 8)e'®  22%(1 + M) ]
2(1 + n)_. e}q(z - 2Ma + 8) -~ o
_ Al gy 2~ 2Na + 8 (g4)
2 2(1 + Ma

Denoting by g the conjugate ﬁo the velocify vector
glves e . .. ; _ - o= ..

| a® it 1 + +" .
- [}VSim . ——4——] [——3—-3——] (95)
ia_,2  2m 2 L2(1 + Ma

The aim of this appendix will be to represent W asg a

function of g. By writing -

olo (z - 20a + s) + ' 2a®(1 + 1) = r,(z,8) (96)
2(1 + T]) eia'(z - 2Na + s)
Zz2 ~ 2Na+ s

BT+ ma = TelEs) (s7)

1t is seen that r; and r; are rational functions of -4

and .gs, where =z, 8§, and g are coannected by the relation

b
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v (s + z)ei“ g 2(1 + M)a®(s + z) iT 8 + g

T - — (98)
2(1 + N)s e %(z - 2Ma + 8)°s 2n (g - 2Na + s)s .

q:
and
82 = g% -~ 4a® (g9)

Introducing a new variaeble +t, defined by

(t 4+ l) &
t
8 = &a (t -

" and it is found that ry &nd T3 Dbecome rational functions
,o0f %, which will be denoted by R, and Rz. A formal com-
putation yields

R, (t) = a [(t - n)eim L (s n)___]
. (1 + 1) T m.ie

gives

Rg(t) %—ﬁ-;—

t and q are connected by a relation

" i1a 4T 1 .
- B.(8) = 0; R.(t) = (=%° [9 U u+m) | ](100)
3 ® ( ® ) 1+ (t-1))2eln 2a (t_-n)__

which is obtained by replacing in (98) s and gz by a._(t+%'->

R .are rational

and a(t—%), respectively. RI. Ra' o

functions of t; By, Rz are so-called algebraic functions of q.

The determination of simgular pointe of these .functions
as well as determination of series development of ‘B, and Ry
around these points can be achieved vging classical methods of
theory of functions. o - -

The derivation of the corresponding developments of R,
and log Rz as a function of 2 = log g does not involve
additional essential difficulties.



58

10,

11,

NACA TN No. 1018

REFERENCES

Kraft, Hans, and Dibble, Charles G.: Some Two-Dimensional
Adiabatic Compressible Flow Patterns. Jour. Aero. Scil.,
vol. 11, no. 4, Oct. 1944, pp. 283~298,

Bergnan, Stefan: A Formula for the Stream Function of
Certain Flowe. Proc. Nat, Acad, Sci., vol. 29, no., 9,

1943, pp. 276-281,

Bergman, Stefan: On Two-Dimensional Flows of Compressible
Fluids., NACA TN No. 972, 1945.

Bergman, Stefan: Graphical and Analytical Methods for the
Determination of a Flow of a Compressible Fluld around
an Obstacle, NACA TN No, 973, 1945.

Garrick, I. E., and Xaplan, Carl: On the Flow of a Com-
pressible Fluid by the Hodograph Method. II -~ Funda-
mental Set of Partilicular Plow Bolutione of the
Chaplygin Differential Hguation., NACA ARR No. L4129,
1944,

Tsien, Hsue-~Shen: Two-Dimensional Subsonic Flow of Com-
pressible Fluids. Jour. Aero. Scil., vol. 6, no. 10,
1939, pp. 399-407.

von Kirmén, Thi: Compressibility Effects in Aerodynamics.
Jour, Aero. Sci.,, vol. 8, no. ¢, July 1941, pp. 337-
355,

Bergman, Stefan: The Hodograph Method in the Theory of
Compressible Fluid. Suppl. to Fluid Dynamics by R..
von Mises and X, Friedrichs. Brown Univ. (Providence,
R. I.), 1942. .

Tamarkin, J. D., and Feller, Willy: Partial Differential
Equations. Brown Univ. (Providence, R. I.), 1941,

Milne-Thomson, L. M,: Theoretical Hydrodynamics,
McMillan & Co. (London), 1938.

Bers, Lipman, and Gelbart, Abe: On a Class of Differential
Bquations in Mechanics of Oontinua. Quarterly of Appl.
Math., vol. 1, no. 2, July 1943, pp. 168-188.



NACA TN No. 1018 59

12. Bergman, Stefan: The Approximation of Functions Satis-
fying 2 Linear Partial Differential Equation. Duke
Math, Jour.,, vol, 6, 1940, pp. 537-b61.

BIBLIOGRAPHY

Chaplygin, S. A,: On Gas Jete. ©Bcientific Memoirs,
Moscow Univ,, Math. Phys. Sec., vol., 21, 1902, pp. 1-121.
(Bng. trans., pub. by Brown Univ., 1944.)(Also NACA TM
No. 1063, 1944§

von Misee, Richard, and Friedrichs, EKurt 0.: Fluid Dynamics.
Brown Univ. (Providence, R, I.,), 1941.

Theodorsen, Theodorse: Theory of Wing Sections of Arbltrary
Shape. NACA Rep. No. 411, 1l931.



441----------lIIIIIllIllllllllllllllllllll.!

Gco

Table 4
The values of §(%ang 10
(8 operation)
6=0.0 o=0,1 8=0.2 8=0.3 8=0.4 0=0.5
LA S(O) T(0) S(0) T(O) 5(0) T(O) S(0) T(O) S(0) T(O) S(O) T(0)
0 .0000] 0.0000 | ~0.0993 0.0049 | -0.1950| 0.0188 | <0.28Z1| 0.039% | —0.3654] 0.0639 | 0. 0.0898
0,1 0.0000{-0.1058 | -0,1113|-0.0983 | -0.2165|-0.0777 | -0.3116|-0.04£0 | -0.3955|-0.0139 | -0.4685| 0.0208
0.2} 0.0000}-0.2270 | -0.1297{-0.2152 | -0.2486{-0,1833 | -0.3509]-0.1396 | —0.4363|-0.0921 | -0.5075(-0.0462
0.3 0,0000(-0.3735 | -0.1599(-0.3561 | -0.2982{-0.3005 | -0.4074|-0.2344 | -0.4943(-0.1693 | -0.5573|-0.1086
0.4| 0.0000]-0.5649 | -0.2147|-0.5240 | ~0.3794|-0.4303 | -0.4895|-0.3275 | -0.5643|-0.2372 | -0,6188|-0.1624
0.5 0.0000(-0.8524 | -0.3312[-0.7491 | -0.5166{~0,5637 | -0.6062{-0.4069 | -0.6564|~0.2898 | -0.6911|-0.2020
0.6 0.0000|~1-4440 | -0.6377|-1.0263 | -0.7424]-0.6523 | —0.7566)-0.4445 | -0.7619|-0.3134 | ~0.7690|-0.2219 |
0,7|-6.0916| 0.0000 | -1.3012|-0.9458 | -1.0117]-0,5906 | —0.9102{-0.4139 | -0.8638|-0.2998 | -0.8439 |-0.2196
0.8(-X.7353| 0.0000 | ~-1.4350(-0.3981 | ~1.1560|-0.3995 | ~1.0166|-0.3280 | -0.9449|-0.2580 | -0,9198 |-0,2015
0.9{-1.3726) 0.0000 | -1.2987|-0,1737 | ~1.1671]-0.2397 | -1.0628)-0.2345 | -0.9943]-0.2039 | -0.9517 |-0.1676
+0[-1.2247] 0.0000 | -1.2013(-0.0914 | -1.1355|-0.1456 | -1.0717|-0.1617 | -1.0186{-0.1539 | -0.9803 |-0.1349
80,6 e=0,7 8=0.8 8=0.9 8=1.0
S(O) T(O) 3{0) {0) gl0)]  ¢(0) g0 {0 (0) {0)
-0.50481 0.1350 | ~0.5643 0.1383 | -0.6184| 0.1590 | -0.6723 0.1765 | ~0.7136] 0.1910
~0.5325] 0.0536 | -0.5892| 0.0832 | -0.6399| 0.1090 | —0.6859] 0.1308 | -0.7281 | 0.1483
~0,.5677]-0.0045 | -0.6259] 0.0322 | —0.6660] 0.0629 | -0.7076| 0.0889 | ~0.7457| 0.1102
-0.6099|-0.0674 | -0.6565{-0,0139 | ~0.6966| 0.0221 | -0.7328| 0.0517 | -0.7660| 0.0758
~0,6619|-0.1016 | -0.6985{-0.0525 | -0.7310(-C.0125 | -0.7683| 0.0201 | -0.7888 | 0.0462
~0.7192|-0.1327 | —0.7444]-0.0818 | —0.7680|~0,0397 | -0.7908|-0.0057 | ~0.8129 | 00217
-0.77911-0.1536 | -0,7916{-0.1007 | -0.8058|-0,0587 | ~0.8213(-0.0249 | -0.8376 | 0.0025
—0.8366|-0,1577 | —0.83711-0.1090 | -0.8424]|-0.0697 | -0.8510{-0.0377 | -0.8619 |-0.0115
-0.8866-0.1290 | -0.8777{-0.1080 | -0.8759|-0.0736 | -0.8788]-0.0449 | ~0.8848 |-0.0209
—0.9260 |-0.1323 | -0.9110{-0.1003 | -0.9048|-0,0720 | -0.9033]-0.0474 | -0.9153 ro.oaf:s
-0.9546 [-0.1120 | -0.9381]-0.0887 | -0.9286(~0.0666 | -0.9243]|-0.0464 | -0.9237 -0.0287

*ON RI YOVN

810T




NACA TN No. 1018 61
Teble 5
(8 operation)
) An,m
. m
n 0 1 2 | 3 4 5
0 -0.5 0.62500 0.11979%7 0.024741 0.003871 | 0.004284
-1 Q.25 0.31250 0.179685510.0818525]| 0.0135485| 0.019287
1 -1 . 0.4166867 § 0.047218 J0.007069 {0.000860 )
2 -0 .66606 0.166687 { 0.0136981 {0.001571 |0.0001568
3' ~-0.266067 0.0476819 | 0.003042 [0.000886 10.000024
4 ~0.078120 | 0.010582 | 0.000553 | 0.000044 {0.000Q003
Table 6
(8 operation)
Cn,m
m
n 0 1 2 3 4
1 0.5708 o 0 0 0 =
2 -0.0817 +0,5708 0 0 0
3 +0,0124 -0.0817 +0.2854 8] 0
4 -~0.0016 +0.0124 -0.04083 +0.0851 0

<



Table 7: The Values of pE (G operation) @
,.—3/2 _—1 _—1/2 ol 1/ _"]/?_, 2 5/9 2 7/2 ; alo »
Y ¥ PI¥ ¥ 5 P / P P pe 7
100000000 ( 100.,00000  10.00000 | 1. | 0.1 |0.0L | 0.001 | 0.0001| 0.00001{ 0.00000L | 0.(6)*1 | 0.(7)1 0.(8)1
125.00000  25.00000 | 5.00000 | 1. 0.2 ;0.04 | 0.008 | 0.0016| 0.00032| 0.000064 | 0.000013[ 0.0000030.00000L
37,03704 | 11.11114 3.33333 | 1.| 0.3 |0.09 | 0,027 | 0.0081| 0.00243| 0.000729 | 0.000219] 0.000066| 0. 000020
15.62500 |  6.25C00 | 2.50000 | 1. | 0.4 [0.16] 0.064 | 0.6256| 0.01024| 0.004096 | ©0.001638 0.000655( 0.000262
8.00000 |  4.00000 | 2.00000 | 1. 0.5 {0.25] 0.125 | 0.0625| 0.03125! 0.015625 | 0.007213! 0.00790% 5.061953
4.62963 | .2.TTT18 | 1.66667 | 1.| 0.6 |0.36 | 0.216 | 0,1296| 0.07776| 0.046656 | 0.027994| 0.0167960.010078
2.91545 | R2.04082 | 1.42857 | 1. | 0.7 (0.49  0.343 | 0.2401 | 0.16807| 0.117649 | 0.082354| 0.05764810.040354
1.95313 | 1.56250 | 1.25000 [ 1. | 0.8 |0.64 [ 0.512 | 0.4095| 0.32768] 0. 0.209715| 0.167772|0.134218
137174 | 1.23457 | 1.11111 (1. | 0.9 [0.81 | 0.729 | 0.656L | 0.59049 ] 0.531441 | 0.478297| 0.430467|0.387420
1.00000 | 1.00000 | 1.00000|1.| 1.0 }1.00|1.000|1.0000{ 1.00000] 1.000000 | 1.000000! 1.000000!1.000000
0.75131 | 0.82644 | 0.90909 (1, | 1.1 [1,21 |1.331 | 1.4641 | 1.6105% ] 1.771561 1 1.94B717| 2.143589(2.357948
0.57870 | 0.69444 | 0.83333 | 1. [ 1.2 |1.44 | 1.728 | 2.0736 | 2.488321 2.985984 | 3.583181| 4.299817(5.159780
0.45517 | 0.59172 | 0.76923 | 1. | 1.3 [1.69 ['2.197 | 2.8561 | 3.71293 ] 4.826809 | 6.274852| 8.157307 [10.604499
0.36443 | 0.51020 | 0.71429 | 1. | 1.4 (1.96 | 2.744 | 3.8416| 5.37824 | 7.529536 | 10.541350 |14. 757891 20661047
0. 20610 022212 nN_GLAAET |1 1. 8 129512 975 | 5 n6&a5 | 7 gow7E 11 200698 117 _naeoas [oc 3 /13260 s
R NSNS VIW el A ] 1) Ll 4 Fa WP S g > PA L e [ ] TSNS | e ® J ST e [ IWJ7J P 8 VAo UE AT WOWJJI
o3 pl172 A2 o A5/ | N
o.%zgi g.gc)%s o.gl)l 0.51%1. O.El:)‘)l)lh. 0.(14)1 (%) Hote: The
0- - 0- 0‘ N O- 0- 10
0.,000006 | 0.000002 ea(é‘%g oi(Z)lsg, 05{3).';% 0.{7)1)-2,38 g;:s:: ﬁz
0.000105 | 0.000042 0.000017 0.000007 0.000003 0.000001 dicates the ..
0.000977 | 0.000488 0.000244, 0.000122 - 0.000061 0.000031 oumber of zerog :
following the )
0.006047 | 0.003628 0.002177 0.001306 0.000784 0.000470 deoimal point. N
0.02828 | 0.019773 0.013841 0.009689 0.006782 0.004748 Thus, 0.(7)205= &
| 0.107374| 0.085899 0.068719 0.054976 0.043980 0.035184 | 0.0000000205. Lo
.| 0.348678( 0.313811 0.282430 |  0.254187 0.228768 0.205891 g
“ | 1.000000| 1.000000 1.,000000 1..000000 1..000000 1..000000 =
-
259312 | 2.853117 3.138428 | 3.452271 | 27998 | 4.1T748 >
6.291736 | '7.430084 8.916100 10.699321 12.839185 15.407022 v
13.785849 | 17.921604 23.298085 30.287511 39.373764 51.185893 o ;
o [28.925465 | 40.495652 56.693912 | 79.3714T7 | 111.120069 | 155.568096 ® ,
5v.6650% | 86.498086 129.74T129 | 194.620493 | 291.931040 | 437.896560 y
i - N R TR
) | . _IH_I |i .ji_'!




coa ¥/2

1.000 000
965 926
.866 025
<707 107
+500 000
258 819
.000 000
—-.258 819
-~500 000
~,707 107
~.866 025
-.965 926
—1-000 mo

g

sin 3¢

cos 3¢

30°
600
K 9 Od
120°
150°
1300
2109

0
290
3009

36091000 000

1,000 000
-000 000
‘10@ (II)
.000 000
1,000 000
.00D 000

'-1.(1)0 (m
.000 000
1,000 000
.000 000
~1.000 000
.000 000
1.000 000
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Table 9 (S operation

Computation of the stream function (in the logarithmic plane) of a
compressible flow generated by the analytic function (2.5)

S S
Aol sO O] @] 3] | 25 25
«02 | .05] ~.0496 | .0009 [-.0002 | .0004 | .OOOL | .0538 .0538
2 | =.1945| .0026 | .0013 .0000 0001 | .1862 »1908
.6 | =.4970 (-.0172 .0342 { -,0003 |-.0009 22511 «2573
«8 | ~.6223 |-,1035 { .1764 | .0003 ]~.0034 | .2125 2006
06 | ,081 ~.0840 | .0047 | 0000 .0000 .0000 0984 0999
+30 | -.2961 | .0142 .0033 | -.0005 0001 . 2792 .2835
-34 "'.314.7 001:12 ‘0058 —.0001 OOOOO -2817 .2975
+50 | = 4460 | 0096 .0200 | -.0011 |-.0002 +2996 «3056
70 | =.5640 | 0054 | 0492 | ~.0043 |-.0020 | .2575 «R541
+90 | -.6577 | %0322 | .1083 | -.0020 | .0109 | .1927 .1832
. 10 [] 15 -~ 1621 L] ous - 0001 . OOOO . 0000 . 2050 - 2082
«351 -.3490 ] ,0275°| .0059 | -.0006 {-.0000 .3380 « 3424,
50 | =e4593 | .0282 +0194 | -.0018 |-.0003 .3362 «3406
60 | -.5218 | ,0246 | .0338 | -.0030 |-.0008 | .3109 <3134
l - 00 -~ 7085 = 0179 . 1507 - 0094 - 0083 L] 1993 . 1&8
40 | ~44311 | .0706 | ,0039 | -.0017 | .0001 | .4701 4731
L] 70 ~e 6]45 [] 0802 - 0623 hat 0057 hend nOOlO -3224 . 351‘-9
[] 80 e 6556 ] 0722 . 0730 haat 0093 - 0017 * 2907 . 284—2
1,00 | -.7324 | .0553 | L1495 | ~.0244 [-.0059 | .2092 - .1908
1.10 | -.7664 | 0442 | 1971 | -.0301 {-,0101{ .1781 .1508
» 30 . 30 ""04454 . 1193 bl 0143 . 0005 . 0001 . 9389 . 6771
-75‘ i 6934 ] 1791 ] 0422 - 0197 [ 0015 .3896 . 3593
85 | =274 | 1791 .0726 | -.0288 .0014 « 3244 +2959
1.10 "‘07158 01666 ulBM "00589 —-0025 .2132 01722
1.20 | ~.8317 | .1578 2388 | -.0740 |-.0065 1411 «1334
040 -35 R 5895 01873 "00326 00019 .0001 lo 0839 09059
[ 60 ~a 6962 . 2439 —e 0128 e 0085 . 0021 [ 5829 . 5458
085 "07672 02587 .0493 ~-a 0351 .0049 -3458 03.240 .
93 | -.7883 | .2588 0789 | -,0469 0057 | .2980 2737
1005 "-8186 -2553 . 1333 bt ) 0673 vOOSA -2416 02109
1,30 | -.8764 | 2197 | .2881} -.0926 [ -.0074 | .1639 L1122
»60 W40 | -.7621 | 3008 | ~.0653 .0074 | ~-.0001 | 1.0761
045 "-7654 I3M9 “00652 .0055 -0005 -9092 -9117
060 “n7808 13460 ':-0532 -.0042 -0036 . 5990 05959
l75 "'8028 ¢3628 —.0240 -.0227 00072 04250 !4188
<95 | -.83781 3714 | .0434{ -.0595 { .0133{ .2869 2734
1.00 | -.8479 | .3718 | ,0653 | -.0709 | .0L47 | .2623
1.15| --.8783 | .3694 1440 | -.1108 .0180 « 2045 .1785

(continued on next page)




NACA TN No. 1018 68

Table © (Continued)

2
Al el @] @] s@ @ | s 55 25
70| ~-.8844 | .5258 | -.1238 | -,0005 0076 | .3759 «3753
1.05]. -.9090 | .5448 | -.0020 |-.0928 .0334 | .2089 1999
1.10| -.9166 « 5449 .0236 | -.1129 .0396 | .1916 1819
1.20} ~.9323 <5445 .0832 | -.1526 L0457 | 1648 1496
1.40] ~.9721 | .5401 | .2281 |-.2515 0592 | 1242 0959
1.00| .54| -.9729 | .6908 |-.2628 | ,0602 |-.0075 2251 #2292
75| ~.9428 7120 | -.2373 .0246 .0093 2156 2211
1.00f -.9453 | 7247 | ~.1534 [ -.0589 | .0426 | .1612 .1685
1.10] ~.9538 7270 | -.1036 | -.1045 .0586 .1319 <1459
1.20] -.9664 JT277 | 0446 | -.1578 | L0756 .1191 ) 1246
1.35| -.9903 7262 L0611 | ~-.2522 .1020 0927 +0949
1.20( 58] -.9925 +8907 | -.4198 1231 |-.0231 .0816 .0892
| .80| =.9726 | .9049 |-~.3869 ~0722 | 0070 .1082 1230
1.05] -.9748 +9131 | -.2937 | -.0397 | .0623 .0869 .1108
1.15] -.9830 | .9152 | ~-.2405 | -.10GL | .0895 0725 .1000
1.22| -.9899 <9157 | ~.1945 | - 1495 .1098 0625 - .0919
1.30|-1.0008 «9149 | ~.1411 | =.2090 | .1346 .0508 .0822
1.40|-1.0171 .9159 | -.0653 | -.2924 | .1662 .0357 .0699

{continued on next page)

Note: Columns 1 - 6h’ i.e. S(O), S(l)s.., %%L were comButed by means of

-series as described in method II; column. 7 namely ’ ai was

computed directly from the formula for the stream function, see refer-
ence 3. B
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Table 9 (Continued)

o | 2@ (1] 2| (0| ) AT | 0 (0] =@ | LB "H:
-02 - "‘l0329 . -.00 2 -.OUU' - - — -

40| .0476| ~.0773| L0006 | .0012 | .00D2 7oy | oy | —.o77s| “ioozs | -ol0 | 7956
60{ .1005| ~.1658 | -.0010 | .0054 | .0002 6123 | .1025| -,1659| -.0080 | 0051 | .6219
80 1503 | -.2627 | -.0333| .0156 |-.0G00(0L) 4863 1 (L4874 - 27941 -.0206 | 0163 | .510%
06| .08 | ~.0576| -.0015 | .0002 | .0000Y{ .0000(4) | 1.0534 |-.0579 | ~.0022{ -.0001 | .000C {1.0528
e30 | ~.0125 | ~.0443 | .0018 | .00003] .0002 B775 |~.0125 | - 0446 -.0029. | 0003 | 8777
34| .0006| -.0533 [-.0010 .0012 | .0000(5) || .8480 |-.0009 | -.0574| -.0037 | .0004 | .8386
40| L0195! -.0719 | -.0034 | .0019 | ,0000(2) L7930 | 0172 | -.0791| ~.0052 | 0008 | 7798
50| 0468 -.1204 | .0050| .0027 |-.0001 6840 | .0482 | -, 1209| -.0087 | .0020 | .6893
J0| 0917 -.2160 | .0080 | .0086 |-.0008 5382 | 1048 | -.2247| -.0195 | 0083 | .5487
.90 | .1390| ~.3407 | .0020| .0236 |-.00L 4319 | 1486 1 -.3508 | 0377 | L0233 | 4544

1-10 ., 11565 ".4689 “-0008 -0473 0070 l3&2 I1720 "-5077 - ".0670 .0521
401 o35 -,3338| L0123 | .0188 | -.0C48 | .0006 .6196 |{-.2808 | -.0129 7482
. .60 | -,1228| -,1559 | 0725 | -,0112 | L0OO1 L5370 {-,1017 | -.1637 <3921
.85 | -.0100| -,3397 | .1366 | -.Q074 | -.0053 4818 | L0045 | -.3401} +2979
93| 0152 -.4023 | .1582 | -.0023 | -.0086 4627 | 0284 | -.4008 .2823
0,05 | 0476 —.4978 | .1879 ! .0106 }-.0156 4349 | L0573 | 4950 2637
1-30 -1650 —.7081 02173 .2080 “00584 n3458 -09'70 "-7031 2338
101 15} ~-,0893 | -.0073 | .0010 | ~.00002| .0001 1.0554 {~.0895 | —=.0077 | —.0009 |' .0000 |1.0548
2351 -.0317| -.0598 | 0054 | .0005 | .OOOL 8365 {-.0312 | ~.0600| -.0063 | .0002 | .8379
L5011 W0198| -.1218 | .0098 | L0023 |-.000L HB776 | 0207 | —.1223 | -.0123 | .00L4 | .6829
60| L0519 -.2717 ) 0119 | .0Q48 |-.0003 .5925 | .0536| -.1721 | -.0181 |. .0039 | .6001
J70| L0816 -.2282 ) L0145 0091 | -.0008 L5221 | L0832 -.2282 | -.0252 | 0067 | .5343
1.00| .1488| -.4270| 0147 | .0376 |-.0039 23808 | J1487 | —-.4270| ~.0693 | 0341 | 4047
20| .22 -.27531 -.0091| .0035| -.001, | .0019 1.0753 | -.1752 | -.0092| -,0035 |-.0001 |1.0744
40| -.0923| -.0730 | .OL41] ~.0006 | .0000(4) JT760 | -.090L | -~.0734| -.0127 [~.0008 | .T783
J10] J06041 -.2573 | .0326] L0095 | -.0005 738 1-.0006 | —.2677| ~.0384 | L0022 | .4803
80| L0626} —.2984 .0453} .0127 |-.0030 L4250 | 0629 | -.2986| —.0465 | .0052 .4265
1.00| .1123) -.4402 | .0588} L0347 | -.0075 W3485 | 1102 —@?'ﬂﬁﬁ,-%ﬁ -%g
1.10] .1316] -.5165| L0631} .0513| -.0108 23204 | J272| -.5164 -.0740 { .0R268 1 3390

28
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288
d2g(alo | 1@ @ PR IE | IPCON VS O fD] @ [ OV 2x
ck -

& 30| 30| -.2856 | -.0012| .OLLL|-.0009| -.0108 | .9945 | -.2 +.0L +.008L | -

o200 200 20| oo tomn | ioon| Tooks | (e M | R | non | oozl
E 5§ 85 | +.0208 | —.3396| .1008| +.0053| —.0056 | .3226| .03% | -.337%9 | —.1029 | .0030| .3614
LE 95| +.0501 | ~.A142} 1183 | +.0144 | -.0092 | .2983 ) .0&43 -4 7 -.1199 L0125] .3325
$o e | LI0| +.0855 ) 53201 L1438 £.0958) 0260 | L2726 | L0952 | 5273 | 1245 | 0362 (2998
ng | [1e20] +.0985 | —6l44] 1600 | £.0566 | ~.0240 | L2577 | 104 | - 1539 | Loma| L2823
o] [

He |,60] .40| ~.7232 | +.0168) .o201 | ~.0102 +.0019 | .0564 | -.3198 | +.0039
P P -45 "".2639 _..00214. -0447 --0135 +.m -0717 ".2636 "'-02]-1 1%38.1
"ﬁlc")“' - ‘60 _'1533 "'01369 -0943 +n0224 +-m15 -1147 "']-535 “‘-13’71 .]_]31
9,5 " 5 | 0777 | -.2552 1475 | +.0286 ) +.0004 | 1459 | -.0786 | -.2556 1431
<8 2 <95} 0076 | -.4180) .2212 | +.0270]-.0075 | L1704 | -.0004 | —.4182 .1632
g 1,00 | +.0060 | -.4597( .2398 |+.0244 | -.0007 | (1747 | +.0025 | -.4628
glﬁ ‘-T’_T 1‘\-15 +-01|.O6 —.5872 o2955 +-m88 “'1024-0 '].84-7 +|034-]- -'-58'?2 cl&*
Hu '

B |-80| .50 1986 | -,0163] 0679 | ~.0297 | +.0070 | ~.2726 | ~.1985 -.0159 —a 2766
Py 70 | =.1078 | -.19391 1704 | —.0871L | +.0097 | -.0434 | =109 | -.1939 —. 0486

ge 3 .90 | =.0446 | -.3692( L2775 | -.0767 | +.0058 | +.0581 | —.0449 | —.3689 +.0463

= 1.05 | -.0094 | -.5024| .3587 | -.0817 | -.0041 | +.1016 | -.0004 | -.5020 .0820

°on 1.10 | +.0007 | -.5463| .3864 | ~.08L4 | 0090 | +.1130 | =.0008 — 5467 0300

g 1,20 | +.0188 | -.6358| 4408 | - 0757 | -.0216 | +.1322 | +.0157 -.6362 .1019

S %‘; 1.40 | +.0465 | <8183 5505 | ~ 0447 | —-0596 | +.1643 | +.0400 -.8187 <1137

n X

2% 1.00| .54 | —.0619 | +.3863) ~.5576 | ~.0538 | +,0168 | -.2056 | -.1260 ~.0218 —.2693

He B 75 | +.0923 | +.3747| ~.7201 | -.2072 | +.0263 | +.0015 | -.0780 .| -.2223 -.0939

bl g 1.00 | +.2105 | +.3884| ~.9227 | ~1568 | +.0235 | +.1543 | ~.0194 | —.4525 +.0094

s 1.10 | +.2556 | +.4009{-1.0074 | ~ 1697 | +.0157 | +.2010 | —.0019 | —.5451 0333

SRE | [1.20] +.2995 | +.4264)0.1175 | -1767 | +.0033 | +.2439 | +.0007 | -.6376 -0506

@2 1.36 | +.3640 | +.4450|-1.2776 | - 1752} ~.0255 | +.3041 | +.0171 | -.7782 0678

LWy . .

"2 81 00| .58 | +.0785 | +.4983| ~.7305 [ 0003 | +.0338 | 0975 | ~.0757 | 0434 _ 1764
g8 20| +.1662 | +.5113) ~.8962 | 1796 | +.0566 | +.0375 | ~.0511 | ~.2558 -.0808
E B 1005 +-2708 +15.£|8L "1-1099 —.-26& +.%21 +.1%5 "'.0213 -'-4945 —.0089
T a 1.15] +.3122 | +.5606{-1.2038 | —.2934 | +.0556 | +.2123 } -.0107 | -.5896 +.0104
A @ 1.22| +.3412 | +.5857{-1.2717 | =.3110 | +.0475 +.2,36 | -.0040 —-.6563 +.02i§

1.30| +.3733 | +.6061|~1.3535 | -.3215 | +.0335 | +.2788 | +.0029 | 7325 +.03
140 | #.4133 | +.6350]-1.4595 | -.3322 | +.0202 | +.3220 | +.0106 | -—.8283- +.0414

Table 9 (Concluded)
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Table 10

The values ofés(o).DT(o).ﬂs(o).AT(o) *
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NACA TN No. 1018 Table 11 89
Y(A, ©) in the vieinity of the curve Y = O.
(8 operation)
A 9 y A 9 ¥
el -02 '10 -1014 '60 -90 "'0018
.20 . .006 .95 -.003
.30 .038 1.00 009
_ 1.05 020
- .06 «20 -.036
-30 0003 - 080 090 "‘-0-4.0
-40 0038 1005 --004
1.10 007
- .10 «30 ~.043 1.20 .025
40 -.001 1.40 055
45 .017. '
.50 .036 -1.00 1.00 -.026
1.05 -.018
- 20 40 -.088 1.10 -.010
.50 -.038 llls -'-003
55 -.014% 1.20 004
.60 .007
065 » 0026 “1-20 1-10 --014
1!20 —'004
- .30 165 "-024 1030-7 -005
.70 .001 1.40 .013
.75 .018
.80 .032 -1.90 1.3 -.0025
1.4 -.0002
- 40 .70 -.033 1.45 .0010
.80 -.001 1.5 .0020
.85 011
-95 0032

Table 13

The values of ayWy, V3, Ve along the curve ¥ = O.
(8 operation) '

- .02 1.024 1.085 .256
- .06 1.055 . 990 377
- L10. 1.002 845 «400
- .20 .852 .580 431
-~ .30 715 410 .392
-~ 40 .528 .260 .286
~ .50 483 .208 o274
- .60 418 159 .289
- .80 .366 .110 «229
~1.00 « 254, .061 134
“l . 20 . 166 . 031 . 090
~1.90 067 »006 -023
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Table 13
(8 operation)

8 &8 a function of 'v/'a'.0 for one quadrant of the curve ? =0
Vo, M T A o
707 74523 . 66681 -0.12091 LL77
.669. .70111 71305 -0.15905 307

.633 .66000 75127 ~0.19962 .403
557 ‘ 57513 .81806 -~0.30026 .582
o494 .50652 86223 -0.40123 | .698
o440 44877 .89365 -0.50296 .805
«395 40131 . 91594 -0.60065 .885
«355 35956 . .93312 -0.69930 _ 962 -
.288 « 29042 .95690 -0.89731 1.067
«234 +23529 97193 © =1.09784 1.168
.183 .18362 .98300 _ -1.33821 1.245
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Table 14
(s operation)

71

a a :
The values of -2 x, -2 y along t_he curve Y =0 s, for one quedrant cf the

Po Po

curve. The curve 1s symmetric with respect to both the x and y axes.

. +8 +&8
v/a, M T A F‘llyl =2 |x|
_ o o
.10 0.10010 . 99498 -1.93676 .027 002
20 0.20081 .97963 -1.25082 .055 .009
40 0.40656 91362 -0.58907 .103 034
<50 0.51299 85839 -0.39083 <123 052
.55 0.56743 82342 -0.31062 131 .063
.60 0.62284 78235 -0,24069 .138 077
.65 0.67933 .73383 ~0.17949 Q46 093 .
.70 0.73704 67585 -0.12761 152 113
725 0.76640 64236 ~0,10237 156 135
‘Table 15
(8 operation)
80 dy , ~20 _dx -
The values of — s = along the curve V¥ = 0 for one quadrant of the
Pq Qv Po dv . . .
curve.,
~80 gy “8o ax

M v/ 29 T » fo dv P, 4v
.766 .725 64284 ~0.10477 L
0745 0707 .66707 "0-12111 -99 5 . 54
.70L 669 C 71316 -0.15921 1.29 4.07
660 633 75127 -0.19961 1.48 3.49
«575 557 .81816 -0.30044 1.69 2.56
«507 494 .86195 -0.40029 1.82 2.17
401 .395 .91608 -0.60128 1.95 1.59
<360 «355 «93295 -0,69820 2.19 1.53
.184 .183 .98292 -1.33648 2.75 94
. 089 . 089 .99603 -‘2 . 05277 2 . 80 . 4—5




NACA TN No. 1018 Figs. 1, 2, 3
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NACA TN No. 1018 Figs. 4, 5
S z-plane, 2 = x + 1y
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Figure 4.- Joukowski profile.

V-plane, V = v + ivg
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Figure 5.- The hodograph of a flow around the profile in fig. 4.
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Figure 6.~ The image of the\ hodograph

(fig. 5
rithmic plane.
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Figure 14.,- The image of Y(4,0) = O in tha physioal plsne.
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NACA TN Ho. 1018 Figs. 18,17
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Figure 16.- The functions T and Ty,.
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Figure 17.- The coeificients -2n; bp.



